Heterogeneous Face Recognition Using Domain Invariant Units
- URL: http://arxiv.org/abs/2404.14343v1
- Date: Mon, 22 Apr 2024 16:58:37 GMT
- Title: Heterogeneous Face Recognition Using Domain Invariant Units
- Authors: Anjith George, Sebastien Marcel,
- Abstract summary: We leverage a pretrained face recognition model as a teacher network to learn domaininvariant network layers called Domain-Invariant Units (DIU)
The proposed DIU can be trained effectively even with a limited amount of paired training data, in a contrastive distillation framework.
This proposed approach has the potential to enhance pretrained models, making them more adaptable to a wider range of variations in data.
- Score: 4.910937238451485
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Heterogeneous Face Recognition (HFR) aims to expand the applicability of Face Recognition (FR) systems to challenging scenarios, enabling the matching of face images across different domains, such as matching thermal images to visible spectra. However, the development of HFR systems is challenging because of the significant domain gap between modalities and the lack of availability of large-scale paired multi-channel data. In this work, we leverage a pretrained face recognition model as a teacher network to learn domaininvariant network layers called Domain-Invariant Units (DIU) to reduce the domain gap. The proposed DIU can be trained effectively even with a limited amount of paired training data, in a contrastive distillation framework. This proposed approach has the potential to enhance pretrained models, making them more adaptable to a wider range of variations in data. We extensively evaluate our approach on multiple challenging benchmarks, demonstrating superior performance compared to state-of-the-art methods.
Related papers
- Modality Agnostic Heterogeneous Face Recognition with Switch Style Modulators [4.910937238451485]
We introduce a novel framework designed to train a modality-agnostic HFR method capable of handling multiple modalities during inference.
We achieve this by implementing a computationally efficient automatic routing mechanism called Switch Style Modulation Blocks (SSMB)
Our proposed SSMB can be trained end-to-end and seamlessly integrated into pre-trained face recognition models, transforming them into modality-agnostic HFR models.
arXiv Detail & Related papers (2024-07-11T16:21:48Z) - From Modalities to Styles: Rethinking the Domain Gap in Heterogeneous Face Recognition [4.910937238451485]
We present a new Conditional Adaptive Instance Modulation (CAIM) module that seamlessly fits into existing Face Recognition networks.
The CAIM block modulates intermediate feature maps, efficiently adapting to the style of the source modality and bridging the domain gap.
We extensively evaluate the proposed approach on various challenging HFR benchmarks, showing that it outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-04-22T15:00:51Z) - Fiducial Focus Augmentation for Facial Landmark Detection [4.433764381081446]
We propose a novel image augmentation technique to enhance the model's understanding of facial structures.
We employ a Siamese architecture-based training mechanism with a Deep Canonical Correlation Analysis (DCCA)-based loss.
Our approach outperforms multiple state-of-the-art approaches across various benchmark datasets.
arXiv Detail & Related papers (2024-02-23T01:34:00Z) - Towards Full-scene Domain Generalization in Multi-agent Collaborative
Bird's Eye View Segmentation for Connected and Autonomous Driving [54.60458503590669]
We propose a unified domain generalization framework applicable in both training and inference stages of collaborative perception.
We employ an Amplitude Augmentation (AmpAug) method to augment low-frequency image variations, broadening the model's ability to learn.
In the inference phase, we introduce an intra-system domain alignment mechanism to reduce or potentially eliminate the domain discrepancy.
arXiv Detail & Related papers (2023-11-28T12:52:49Z) - Bridging the Gap: Heterogeneous Face Recognition with Conditional
Adaptive Instance Modulation [7.665392786787577]
We introduce a novel Conditional Adaptive Instance Modulation (CAIM) module that can be integrated into pre-trained Face Recognition networks.
The CAIM block modulates intermediate feature maps, to adapt the style of the target modality effectively bridging the domain gap.
Our proposed method allows for end-to-end training with a minimal number of paired samples.
arXiv Detail & Related papers (2023-07-13T19:17:04Z) - Prepended Domain Transformer: Heterogeneous Face Recognition without
Bells and Whistles [9.419177623349947]
We propose a surprisingly simple, yet, very effective method for matching face images across different sensing modalities.
The proposed approach is architecture agnostic, meaning they can be added to any pre-trained models.
The source code and protocols will be made available publicly.
arXiv Detail & Related papers (2022-10-12T18:54:57Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Escaping Data Scarcity for High-Resolution Heterogeneous Face
Hallucination [68.78903256687697]
In Heterogeneous Face Recognition (HFR), the objective is to match faces across two different domains such as visible and thermal.
Recent methods attempting to fill the gap via synthesis have achieved promising results, but their performance is still limited by the scarcity of paired training data.
In this paper, we propose a new face hallucination paradigm for HFR, which not only enables data-efficient synthesis but also allows to scale up model training without breaking any privacy policy.
arXiv Detail & Related papers (2022-03-30T20:44:33Z) - Heterogeneous Face Frontalization via Domain Agnostic Learning [74.86585699909459]
We propose a domain agnostic learning-based generative adversarial network (DAL-GAN) which can synthesize frontal views in the visible domain from thermal faces with pose variations.
DAL-GAN consists of a generator with an auxiliary classifier and two discriminators which capture both local and global texture discriminations for better synthesis.
arXiv Detail & Related papers (2021-07-17T20:41:41Z) - DotFAN: A Domain-transferred Face Augmentation Network for Pose and
Illumination Invariant Face Recognition [94.96686189033869]
We propose a 3D model-assisted domain-transferred face augmentation network (DotFAN)
DotFAN can generate a series of variants of an input face based on the knowledge distilled from existing rich face datasets collected from other domains.
Experiments show that DotFAN is beneficial for augmenting small face datasets to improve their within-class diversity.
arXiv Detail & Related papers (2020-02-23T08:16:34Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
We introduce an unsupervised domain adaptation approach for person re-identification.
Experimental results show that the proposed ktCUDA and SHRED approach achieves an average improvement of +5.7 mAP in re-identification performance.
arXiv Detail & Related papers (2020-01-14T17:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.