A Dynamic Points Removal Benchmark in Point Cloud Maps
- URL: http://arxiv.org/abs/2307.07260v1
- Date: Fri, 14 Jul 2023 10:21:26 GMT
- Title: A Dynamic Points Removal Benchmark in Point Cloud Maps
- Authors: Qingwen Zhang, Daniel Duberg, Ruoyu Geng, Mingkai Jia, Lujia Wang,
Patric Jensfelt
- Abstract summary: In the field of robotics, the point cloud has become an essential map representation.
Existing methods for removing dynamic points in point clouds often lack clarity in comparative evaluations.
We propose an easy-to-extend unified benchmarking framework for evaluating techniques for removing dynamic points in maps.
- Score: 7.932462079146208
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the field of robotics, the point cloud has become an essential map
representation. From the perspective of downstream tasks like localization and
global path planning, points corresponding to dynamic objects will adversely
affect their performance. Existing methods for removing dynamic points in point
clouds often lack clarity in comparative evaluations and comprehensive
analysis. Therefore, we propose an easy-to-extend unified benchmarking
framework for evaluating techniques for removing dynamic points in maps. It
includes refactored state-of-art methods and novel metrics to analyze the
limitations of these approaches. This enables researchers to dive deep into the
underlying reasons behind these limitations. The benchmark makes use of several
datasets with different sensor types. All the code and datasets related to our
study are publicly available for further development and utilization.
Related papers
- ERASOR++: Height Coding Plus Egocentric Ratio Based Dynamic Object
Removal for Static Point Cloud Mapping [5.056432027978704]
Dynamic objects in 3D point cloud maps can introduce map distortion and long traces.
We propose ERASOR++, an enhanced approach based on the Egocentric Ratio of Pseudo Occupancy for effective dynamic object removal.
Our approach demonstrates superior performance in terms of precision and efficiency compared to existing methods.
arXiv Detail & Related papers (2024-03-08T03:45:04Z) - Bidirectional Knowledge Reconfiguration for Lightweight Point Cloud
Analysis [74.00441177577295]
Point cloud analysis faces computational system overhead, limiting its application on mobile or edge devices.
This paper explores feature distillation for lightweight point cloud models.
We propose bidirectional knowledge reconfiguration to distill informative contextual knowledge from the teacher to the student.
arXiv Detail & Related papers (2023-10-08T11:32:50Z) - Few-Shot 3D Point Cloud Semantic Segmentation via Stratified
Class-Specific Attention Based Transformer Network [22.9434434107516]
We develop a new multi-layer transformer network for few-shot point cloud semantic segmentation.
Our method achieves the new state-of-the-art performance, with 15% less inference time, over existing few-shot 3D point cloud segmentation models.
arXiv Detail & Related papers (2023-03-28T00:27:54Z) - GPCO: An Unsupervised Green Point Cloud Odometry Method [64.86292006892093]
A lightweight point cloud odometry solution is proposed and named the green point cloud odometry (GPCO) method.
GPCO is an unsupervised learning method that predicts object motion by matching features of consecutive point cloud scans.
It is observed that GPCO outperforms benchmarking deep learning methods in accuracy while it has a significantly smaller model size and less training time.
arXiv Detail & Related papers (2021-12-08T00:24:03Z) - Revisiting Point Cloud Shape Classification with a Simple and Effective
Baseline [111.3236030935478]
We find that auxiliary factors like different evaluation schemes, data augmentation strategies, and loss functions make a large difference in performance.
A projection-based method, which we refer to as SimpleView, performs surprisingly well.
It achieves on par or better results than sophisticated state-of-the-art methods on ModelNet40 while being half the size of PointNet++.
arXiv Detail & Related papers (2021-06-09T18:01:11Z) - Investigate Indistinguishable Points in Semantic Segmentation of 3D
Point Cloud [34.414363402029984]
Indistinguishable points consist of those located in complex boundary, points with similar local textures but different categories, and points in isolate small hard areas.
We propose a novel Indistinguishable Area Focalization Network (IAF-Net), which selects indistinguishable points adaptively by utilizing the hierarchical semantic features.
Our IAF-Net achieves the comparable results with state-of-the-art performance on several popular 3D point cloud datasets.
arXiv Detail & Related papers (2021-03-18T15:54:59Z) - ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object
Removal for Static 3D Point Cloud Map Building [0.1474723404975345]
This paper presents a novel static map building method called ERASOR, Egocentric RAtio of pSeudo Occupancy-based dynamic object Removal.
Our approach directs its attention to the nature of most dynamic objects in urban environments being inevitably in contact with the ground.
arXiv Detail & Related papers (2021-03-07T10:29:07Z) - SoftPoolNet: Shape Descriptor for Point Cloud Completion and
Classification [93.54286830844134]
We propose a method for 3D object completion and classification based on point clouds.
For the decoder stage, we propose regional convolutions, a novel operator aimed at maximizing the global activation entropy.
We evaluate our approach on different 3D tasks such as object completion and classification, achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2020-08-17T14:32:35Z) - Radar-based Dynamic Occupancy Grid Mapping and Object Detection [55.74894405714851]
In recent years, the classical occupancy grid map approach has been extended to dynamic occupancy grid maps.
This paper presents the further development of a previous approach.
The data of multiple radar sensors are fused, and a grid-based object tracking and mapping method is applied.
arXiv Detail & Related papers (2020-08-09T09:26:30Z) - Point Set Voting for Partial Point Cloud Analysis [26.31029112502835]
techniques for point cloud classification and segmentation have in recent years achieved incredible performance driven in part by leveraging large synthetic datasets.
This paper proposes a general model for partial point clouds analysis wherein the latent feature encoding a complete point clouds is inferred by applying a local point set voting strategy.
arXiv Detail & Related papers (2020-07-09T03:37:31Z) - Few-shot 3D Point Cloud Semantic Segmentation [138.80825169240302]
We propose a novel attention-aware multi-prototype transductive few-shot point cloud semantic segmentation method.
Our proposed method shows significant and consistent improvements compared to baselines in different few-shot point cloud semantic segmentation settings.
arXiv Detail & Related papers (2020-06-22T08:05:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.