ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object
Removal for Static 3D Point Cloud Map Building
- URL: http://arxiv.org/abs/2103.04316v1
- Date: Sun, 7 Mar 2021 10:29:07 GMT
- Title: ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object
Removal for Static 3D Point Cloud Map Building
- Authors: Hyungtae Lim, Sungwon Hwang, and Hyun Myung
- Abstract summary: This paper presents a novel static map building method called ERASOR, Egocentric RAtio of pSeudo Occupancy-based dynamic object Removal.
Our approach directs its attention to the nature of most dynamic objects in urban environments being inevitably in contact with the ground.
- Score: 0.1474723404975345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scan data of urban environments often include representations of dynamic
objects, such as vehicles, pedestrians, and so forth. However, when it comes to
constructing a 3D point cloud map with sequential accumulations of the scan
data, the dynamic objects often leave unwanted traces in the map. These traces
of dynamic objects act as obstacles and thus impede mobile vehicles from
achieving good localization and navigation performances. To tackle the problem,
this paper presents a novel static map building method called ERASOR,
Egocentric RAtio of pSeudo Occupancy-based dynamic object Removal, which is
fast and robust to motion ambiguity. Our approach directs its attention to the
nature of most dynamic objects in urban environments being inevitably in
contact with the ground. Accordingly, we propose the novel concept called
pseudo occupancy to express the occupancy of unit space and then discriminate
spaces of varying occupancy. Finally, Region-wise Ground Plane Fitting (R-GPF)
is adopted to distinguish static points from dynamic points within the
candidate bins that potentially contain dynamic points. As experimentally
verified on SemanticKITTI, our proposed method yields promising performance
against state-of-the-art methods overcoming the limitations of existing ray
tracing-based and visibility-based methods.
Related papers
- V3D-SLAM: Robust RGB-D SLAM in Dynamic Environments with 3D Semantic Geometry Voting [1.3493547928462395]
Simultaneous localization and mapping (SLAM) in highly dynamic environments is challenging due to the correlation between moving objects and the camera pose.
We propose a robust method, V3D-SLAM, to remove moving objects via two lightweight re-evaluation stages.
Our experiment on the TUM RGB-D benchmark on dynamic sequences with ground-truth camera trajectories showed that our methods outperform the most recent state-of-the-art SLAM methods.
arXiv Detail & Related papers (2024-10-15T21:08:08Z) - Instantaneous Perception of Moving Objects in 3D [86.38144604783207]
The perception of 3D motion of surrounding traffic participants is crucial for driving safety.
We propose to leverage local occupancy completion of object point clouds to densify the shape cue, and mitigate the impact of swimming artifacts.
Extensive experiments demonstrate superior performance compared to standard 3D motion estimation approaches.
arXiv Detail & Related papers (2024-05-05T01:07:24Z) - ERASOR++: Height Coding Plus Egocentric Ratio Based Dynamic Object
Removal for Static Point Cloud Mapping [5.056432027978704]
Dynamic objects in 3D point cloud maps can introduce map distortion and long traces.
We propose ERASOR++, an enhanced approach based on the Egocentric Ratio of Pseudo Occupancy for effective dynamic object removal.
Our approach demonstrates superior performance in terms of precision and efficiency compared to existing methods.
arXiv Detail & Related papers (2024-03-08T03:45:04Z) - DORT: Modeling Dynamic Objects in Recurrent for Multi-Camera 3D Object
Detection and Tracking [67.34803048690428]
We propose to model Dynamic Objects in RecurrenT (DORT) to tackle this problem.
DORT extracts object-wise local volumes for motion estimation that also alleviates the heavy computational burden.
It is flexible and practical that can be plugged into most camera-based 3D object detectors.
arXiv Detail & Related papers (2023-03-29T12:33:55Z) - Vision-aided UAV navigation and dynamic obstacle avoidance using
gradient-based B-spline trajectory optimization [7.874708385247353]
This paper proposes a gradient-based B-spline trajectory optimization algorithm utilizing the robot's onboard vision.
The proposed optimization first adopts the circle-based guide-point algorithm to approximate the costs and gradients for avoiding static obstacles.
With the vision-detected moving objects, our receding-horizon distance field is simultaneously used to prevent dynamic collisions.
arXiv Detail & Related papers (2022-09-15T02:12:30Z) - Neural Motion Fields: Encoding Grasp Trajectories as Implicit Value
Functions [65.84090965167535]
We present Neural Motion Fields, a novel object representation which encodes both object point clouds and the relative task trajectories as an implicit value function parameterized by a neural network.
This object-centric representation models a continuous distribution over the SE(3) space and allows us to perform grasping reactively by leveraging sampling-based MPC to optimize this value function.
arXiv Detail & Related papers (2022-06-29T18:47:05Z) - ImpDet: Exploring Implicit Fields for 3D Object Detection [74.63774221984725]
We introduce a new perspective that views bounding box regression as an implicit function.
This leads to our proposed framework, termed Implicit Detection or ImpDet.
Our ImpDet assigns specific values to points in different local 3D spaces, thereby high-quality boundaries can be generated.
arXiv Detail & Related papers (2022-03-31T17:52:12Z) - Discovering Objects that Can Move [55.743225595012966]
We study the problem of object discovery -- separating objects from the background without manual labels.
Existing approaches utilize appearance cues, such as color, texture, and location, to group pixels into object-like regions.
We choose to focus on dynamic objects -- entities that can move independently in the world.
arXiv Detail & Related papers (2022-03-18T21:13:56Z) - DPMPC-Planner: A real-time UAV trajectory planning framework for complex
static environments with dynamic obstacles [0.9462808515258462]
Safe UAV navigation is challenging due to the complex environment structures, dynamic obstacles, and uncertainties from measurement noises and unpredictable moving obstacle behaviors.
This paper proposes a trajectory planning framework to achieve safe navigation considering complex static environments with dynamic obstacles.
arXiv Detail & Related papers (2021-09-14T23:51:02Z) - Radar-based Dynamic Occupancy Grid Mapping and Object Detection [55.74894405714851]
In recent years, the classical occupancy grid map approach has been extended to dynamic occupancy grid maps.
This paper presents the further development of a previous approach.
The data of multiple radar sensors are fused, and a grid-based object tracking and mapping method is applied.
arXiv Detail & Related papers (2020-08-09T09:26:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.