Variational dynamics of open quantum systems in phase space
- URL: http://arxiv.org/abs/2307.07429v1
- Date: Fri, 14 Jul 2023 15:48:31 GMT
- Title: Variational dynamics of open quantum systems in phase space
- Authors: Debbie Eeltink, Filippo Vicentini and Vincenzo Savona
- Abstract summary: We present a method to simulate the dynamics of large driven-dissipative many-body open quantum systems.
We present a proof of principle investigation into the physics of the driven-dissipative Bose-Hubbard model with weak nonlinearity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a method to simulate the dynamics of large driven-dissipative
many-body open quantum systems using a variational encoding of the Wigner or
Husimi-Q quasi-probability distributions. The method relies on Monte-Carlo
sampling to maintain a polynomial computational complexity while allowing for
several quantities to be estimated efficiently. As a first application, we
present a proof of principle investigation into the physics of the
driven-dissipative Bose-Hubbard model with weak nonlinearity, providing
evidence for the high efficiency of the phase space variational approach.
Related papers
- Coherent-State Ladder Time-Dependent Variational Principle for Open
Quantum Systems [0.0]
We present a new paradigm for the dynamical simulation of interacting bosonic systems.
The method relies on a variational ansatz for the $n$-boson density matrix, in terms of a superposition of photon-added coherent states.
We test our method on several examples, demonstrating its potential application to the predictive simulation of interacting bosonic systems and cat qubits.
arXiv Detail & Related papers (2023-06-23T18:00:00Z) - Variational quantum dynamics of two-dimensional rotor models [0.0]
We present a numerical method to simulate the dynamics of continuous-variable quantum many-body systems.
Our approach is based on custom neural-network many-body quantum states.
arXiv Detail & Related papers (2022-12-21T19:00:01Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Importance Sampling Scheme for the Stochastic Simulation of Quantum Spin
Dynamics [0.0]
We develop an importance sampling scheme for the simulation of quantum spin dynamics.
An exact transformation is then carried out to preferentially sample trajectories that are close to the dominant one.
We demonstrate that this approach is capable of reducing the temporal growth of fluctuations in the quantities.
arXiv Detail & Related papers (2021-03-30T16:18:28Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation [5.668795025564699]
We present an approach for tackling open quantum system dynamics.
We compactly represent quantum states with autoregressive transformer neural networks.
Efficient algorithms have been developed to simulate the dynamics of the Liouvillian superoperator.
arXiv Detail & Related papers (2020-09-11T18:00:00Z) - Hybrid quantum variational algorithm for simulating open quantum systems
with near-term devices [0.0]
Hybrid quantum-classical (HQC) algorithms make it possible to use near-term quantum devices supported by classical computational resources.
We develop an HQC algorithm using an efficient variational optimization approach to simulate open system dynamics.
arXiv Detail & Related papers (2020-08-12T13:49:29Z) - Method of spectral Green functions in driven open quantum dynamics [77.34726150561087]
A novel method based on spectral Green functions is presented for the simulation of driven open quantum dynamics.
The formalism shows remarkable analogies to the use of Green functions in quantum field theory.
The method dramatically reduces computational cost compared with simulations based on solving the full master equation.
arXiv Detail & Related papers (2020-06-04T09:41:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.