Combining multitemporal optical and SAR data for LAI imputation with
BiLSTM network
- URL: http://arxiv.org/abs/2307.07434v1
- Date: Fri, 14 Jul 2023 15:59:19 GMT
- Title: Combining multitemporal optical and SAR data for LAI imputation with
BiLSTM network
- Authors: W. Zhao, F. Yin, H. Ma, Q. Wu, J. Gomez-Dans, P. Lewis
- Abstract summary: Leaf Area Index (LAI) is vital for predicting winter wheat yield. Acquisition of crop conditions via Sentinel-2 remote sensing images can be hindered by persistent clouds, affecting yield predictions.
This study evaluates the use of time series Sentinel-1 VH/VV for LAI imputation, aiming to increase spatial-temporal density.
We utilize a bidirectional LSTM (BiLSTM) network to impute time series LAI and use half mean squared error for each time step as the loss function.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Leaf Area Index (LAI) is vital for predicting winter wheat yield.
Acquisition of crop conditions via Sentinel-2 remote sensing images can be
hindered by persistent clouds, affecting yield predictions. Synthetic Aperture
Radar (SAR) provides all-weather imagery, and the ratio between its cross- and
co-polarized channels (C-band) shows a high correlation with time series LAI
over winter wheat regions. This study evaluates the use of time series
Sentinel-1 VH/VV for LAI imputation, aiming to increase spatial-temporal
density. We utilize a bidirectional LSTM (BiLSTM) network to impute time series
LAI and use half mean squared error for each time step as the loss function. We
trained models on data from southern Germany and the North China Plain using
only LAI data generated by Sentinel-1 VH/VV and Sentinel-2. Experimental
results show BiLSTM outperforms traditional regression methods, capturing
nonlinear dynamics between multiple time series. It proves robust in various
growing conditions and is effective even with limited Sentinel-2 images.
BiLSTM's performance surpasses that of LSTM, particularly over the senescence
period. Therefore, BiLSTM can be used to impute LAI with time-series Sentinel-1
VH/VV and Sentinel-2 data, and this method could be applied to other
time-series imputation issues.
Related papers
- Spatial-Temporal Bearing Fault Detection Using Graph Attention Networks and LSTM [0.7864304771129751]
This paper introduces a novel method that combines Graph Attention Network (GAT) and Long Short-Term Memory (LSTM) networks.
This approach captures both spatial and temporal dependencies within sensor data, improving the accuracy of bearing fault detection.
arXiv Detail & Related papers (2024-10-15T12:55:57Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Estimating optical vegetation indices and biophysical variables for temperate forests with Sentinel-1 SAR data using machine learning techniques: A case study for Czechia [32.19783248549554]
Current optical vegetation indices (VIs) for monitoring forest ecosystems are well established and widely used in various applications.
In contrast, synthetic aperture radar (SAR) data can offer insightful and systematic forest monitoring with complete time series (TS) due to signal penetration through clouds and day and night image acquisitions.
This study aims to address the limitations of optical satellite data by using SAR data as an alternative for estimating optical VIs for forests through machine learning (ML)
In general, up to 240 measurements per year and a spatial resolution of 20 m can be achieved using estimated SAR-based VIs with high accuracy.
arXiv Detail & Related papers (2023-11-13T18:23:46Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - Imbalanced Aircraft Data Anomaly Detection [103.01418862972564]
Anomaly detection in temporal data from sensors under aviation scenarios is a practical but challenging task.
We propose a Graphical Temporal Data Analysis framework.
It consists three modules, named Series-to-Image (S2I), Cluster-based Resampling Approach using Euclidean Distance (CRD) and Variance-Based Loss (VBL)
arXiv Detail & Related papers (2023-05-17T09:37:07Z) - A Bi-LSTM Autoencoder Framework for Anomaly Detection -- A Case Study of
a Wind Power Dataset [2.094022863940315]
Anomalies refer to data points or events that deviate from normal and homogeneous events.
This study presents a novel framework for time series anomaly detection using a combination of Bi-LSTM architecture and Autoencoder.
The Bi-LSTM Autoencoder model achieved a classification accuracy of 96.79% and outperformed more commonly used LSTM Autoencoder models.
arXiv Detail & Related papers (2023-03-17T00:24:28Z) - Extreme-Long-short Term Memory for Time-series Prediction [0.0]
Long Short-Term Memory (LSTM) is a new type of Recurrent Neural Networks (RNN)
In this paper, we propose an advanced LSTM algorithm, the Extreme Long Short-Term Memory (E-LSTM)
The new E-LSTM requires only 2 epochs to obtain the results of the 7th epoch traditional LSTM.
arXiv Detail & Related papers (2022-10-15T09:45:48Z) - Averaging Spatio-temporal Signals using Optimal Transport and Soft
Alignments [110.79706180350507]
We show that our proposed loss can be used to define temporal-temporal baryechecenters as Fr'teche means duality.
Experiments on handwritten letters and brain imaging data confirm our theoretical findings.
arXiv Detail & Related papers (2022-03-11T09:46:22Z) - Fusing Optical and SAR time series for LAI gap filling with multioutput
Gaussian processes [6.0122901245834015]
Persistent clouds over agricultural fields can mask key stages of crop growth, leading to unreliable yield predictions.
Synthetic Aperture Radar (SAR) provides all-weather imagery which can potentially overcome this limitation.
We propose the use of Multi-Output Gaussian Process (MOGP) regression, a machine learning technique that learns automatically the statistical relationships among multisensor time series.
arXiv Detail & Related papers (2020-12-05T10:36:45Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.