A Bi-LSTM Autoencoder Framework for Anomaly Detection -- A Case Study of
a Wind Power Dataset
- URL: http://arxiv.org/abs/2303.09703v1
- Date: Fri, 17 Mar 2023 00:24:28 GMT
- Title: A Bi-LSTM Autoencoder Framework for Anomaly Detection -- A Case Study of
a Wind Power Dataset
- Authors: Ahmed Shoyeb Raihan and Imtiaz Ahmed
- Abstract summary: Anomalies refer to data points or events that deviate from normal and homogeneous events.
This study presents a novel framework for time series anomaly detection using a combination of Bi-LSTM architecture and Autoencoder.
The Bi-LSTM Autoencoder model achieved a classification accuracy of 96.79% and outperformed more commonly used LSTM Autoencoder models.
- Score: 2.094022863940315
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Anomalies refer to data points or events that deviate from normal and
homogeneous events, which can include fraudulent activities, network
infiltrations, equipment malfunctions, process changes, or other significant
but infrequent events. Prompt detection of such events can prevent potential
losses in terms of finances, information, and human resources. With the
advancement of computational capabilities and the availability of large
datasets, anomaly detection has become a major area of research. Among these,
anomaly detection in time series has gained more attention recently due to the
added complexity imposed by the time dimension. This study presents a novel
framework for time series anomaly detection using a combination of
Bidirectional Long Short Term Memory (Bi-LSTM) architecture and Autoencoder.
The Bi-LSTM network, which comprises two unidirectional LSTM networks, can
analyze the time series data from both directions and thus effectively discover
the long-term dependencies hidden in the sequential data. Meanwhile, the
Autoencoder mechanism helps to establish the optimal threshold beyond which an
event can be classified as an anomaly. To demonstrate the effectiveness of the
proposed framework, it is applied to a real-world multivariate time series
dataset collected from a wind farm. The Bi-LSTM Autoencoder model achieved a
classification accuracy of 96.79% and outperformed more commonly used LSTM
Autoencoder models.
Related papers
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - TSI-GAN: Unsupervised Time Series Anomaly Detection using Convolutional
Cycle-Consistent Generative Adversarial Networks [2.4469484645516837]
Anomaly detection is widely used in network intrusion detection, autonomous driving, medical diagnosis, credit card frauds, etc.
This paper proposes TSI-GAN, an unsupervised anomaly detection model for time-series that can learn complex temporal patterns automatically.
We evaluate TSI-GAN using 250 well-curated and harder-than-usual datasets and compare with 8 state-of-the-art baseline methods.
arXiv Detail & Related papers (2023-03-22T23:24:47Z) - Quantile LSTM: A Robust LSTM for Anomaly Detection In Time Series Data [0.0]
We use a new learnable activation function in the popular Long Short Term Memory networks (LSTM) architecture to model temporal long-range dependency.
The proposed algorithms are compared with other well-known anomaly detection algorithms, such as Isolation Forest (iForest), Elliptic Envelope, Autoencoder, and modern Deep Learning models such as Deep Autoencoding Gaussian Mixture Model (DAGMM), Generative Adversarial Networks (GAN)
The algorithms have been tested on multiple industrial time-series datasets such as Yahoo, AWS, GE, and machine sensors.
arXiv Detail & Related papers (2023-02-17T06:03:16Z) - Denoising Architecture for Unsupervised Anomaly Detection in Time-Series [0.0]
We introduce the Denoising Architecture as a complement to this LSTM-Decoder model.
We demonstrate that the proposed architecture increases both the accuracy and the training speed, thereby, making the LSTM Autoencoder more efficient for unsupervised anomaly detection tasks.
arXiv Detail & Related papers (2022-08-30T15:23:45Z) - LSTM-Autoencoder based Anomaly Detection for Indoor Air Quality Time
Series Data [6.642599588462097]
Anomaly detection for indoor air quality (IAQ) data has become an important area of research as the quality of air is closely related to human health and well-being.
Traditional statistics and machine learning-based approaches in anomaly detection in the IAQ area could not detect anomalies involving the observation of correlations across several data points.
We propose a hybrid deep learning model that combines LSTM with Autoencoder for anomaly detection tasks in IAQ to address this issue.
arXiv Detail & Related papers (2022-04-14T01:57:46Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals [10.866594993485226]
We propose a novel deep learning-based anomaly detection algorithm called Deep Convolutional Autoencoding Memory network (CAE-M)
We first build a Deep Convolutional Autoencoder to characterize spatial dependence of multi-sensor data with a Maximum Mean Discrepancy (MMD)
Then, we construct a Memory Network consisting of linear (Autoregressive Model) and non-linear predictions (Bigressive LSTM with Attention) to capture temporal dependence from time-series data.
arXiv Detail & Related papers (2021-07-27T06:48:20Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Multi-Scale One-Class Recurrent Neural Networks for Discrete Event
Sequence Anomaly Detection [63.825781848587376]
We propose OC4Seq, a one-class recurrent neural network for detecting anomalies in discrete event sequences.
Specifically, OC4Seq embeds the discrete event sequences into latent spaces, where anomalies can be easily detected.
arXiv Detail & Related papers (2020-08-31T04:48:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.