論文の概要: Atlas-Based Interpretable Age Prediction In Whole-Body MR Images
- arxiv url: http://arxiv.org/abs/2307.07439v2
- Date: Tue, 29 Aug 2023 12:57:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-30 17:47:22.886418
- Title: Atlas-Based Interpretable Age Prediction In Whole-Body MR Images
- Title(参考訳): 全体MR画像におけるAtlas-based Interpretable Age Prediction
- Authors: Sophie Starck, Yadunandan Vivekanand Kini, Jessica Johanna Maria
Ritter, Rickmer Braren, Daniel Rueckert and Tamara Mueller
- Abstract要約: 我々は、Grad-CAMの解釈可能性法を用いて、人の年齢の最も予測可能な身体領域を決定する。
我々は,平均絶対誤差2.76年のモデルを用いて,最先端の全身年齢予測を定式化した。
- 参考スコア(独自算出の注目度): 9.332992069542746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Age prediction is an important part of medical assessments and research. It
can aid in detecting diseases as well as abnormal ageing by highlighting the
discrepancy between chronological and biological age. To gain a comprehensive
understanding of age-related changes observed in various body parts, we
investigate them on a larger scale by using whole-body images. We utilise the
Grad-CAM interpretability method to determine the body areas most predictive of
a person's age. We expand our analysis beyond individual subjects by employing
registration techniques to generate population-wide interpretability maps.
Furthermore, we set state-of-the-art whole-body age prediction with a model
that achieves a mean absolute error of 2.76 years. Our findings reveal three
primary areas of interest: the spine, the autochthonous back muscles, and the
cardiac region, which exhibits the highest importance.
- Abstract(参考訳): 年齢予測は医療評価と研究の重要な部分である。
慢性期と生物学的年齢の相違を強調することにより、疾患の検出や異常な老化を支援できる。
様々な部位で観察される年齢変化の包括的理解を得るために,全体像を用いて大規模に調査を行った。
人の年齢を最も予測する身体領域を決定するために, grad-cam の解釈可能性を用いた。
我々は,人口全体にわたる解釈可能性マップの作成に登録技術を用いることにより,個々の対象にまたがって分析を展開する。
さらに,平均絶対誤差を2.76年とするモデルを用いて,最先端の全身年齢予測を行う。
以上の結果より, 脊椎, 自家背筋, 心臓領域の3つの主要な関心領域が明らかとなった。
関連論文リスト
- Dual Graph Attention based Disentanglement Multiple Instance Learning for Brain Age Estimation [24.548441213107566]
本稿では,DGA-DMIL(Dual Graph Attention based Disentanglement Multi-instance Learning)フレームワークを提案する。
次に,双対グラフ注意アグリゲータを提案し,instance内およびinter-instance間関係を利用してバックボーンの特徴を学習する。
提案モデルでは,脳年齢推定における異常な精度を示し,英国バイオバンクで2.12年間の絶対誤差を達成した。
論文 参考訳(メタデータ) (2024-03-02T16:13:06Z) - Multimodal brain age estimation using interpretable adaptive
population-graph learning [58.99653132076496]
下流タスクに最適化された人口グラフ構造を学習するフレームワークを提案する。
注意機構は、画像と非画像の特徴のセットに重みを割り当てる。
グラフ構築において最も重要な注意重みを可視化することにより、グラフの解釈可能性を高める。
論文 参考訳(メタデータ) (2023-07-10T15:35:31Z) - Brain Structure Ages -- A new biomarker for multi-disease classification [0.0]
構造磁気共鳴画像を用いて脳構造年齢を推定することにより,大域的脳年齢の概念を拡張することを提案する。
脳構造年代は、各脳構造の正常な老化過程からの偏差を計算するために用いられる。
論文 参考訳(メタデータ) (2023-04-13T14:56:51Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
我々は、Mine yOur owN Anatomy (MONA) と呼ばれる、新しい半教師付き2次元医用画像セグメンテーションフレームワークを紹介する。
まず、先行研究では、すべてのピクセルがモデルトレーニングに等しく重要であると論じており、我々はこの1つだけで意味のある解剖学的特徴を定義できないことを経験的に観察している。
第2に,医療画像を解剖学的特徴の集合に分解できるモデルを構築する。
論文 参考訳(メタデータ) (2022-09-27T15:50:31Z) - Generative Modelling of the Ageing Heart with Cross-Sectional Imaging
and Clinical Data [13.819131884449881]
本研究では, 加齢に伴う心臓の3次元解剖学的変化を記述するための条件生成モデルを提案する。
心臓解剖学の大規模横断データセットを用いてモデルを訓練し,横断データセットと縦データセットの両方で評価する。
論文 参考訳(メタデータ) (2022-08-28T06:14:39Z) - Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with
Multi-Task Brain Age Prediction [53.122045119395594]
ディープラーニングを用いた脳MRIにおける教師なし異常検出(UAD)は有望な結果を示した。
年齢情報を考慮した3次元脳MRIにおけるUDAの深層学習を提案する。
そこで本研究では,マルチタスク年齢予測を用いた新しい深層学習手法を提案する。
論文 参考訳(メタデータ) (2022-01-31T09:39:52Z) - Voxel-level Importance Maps for Interpretable Brain Age Estimation [70.5330922395729]
本稿では,畳み込みニューラルネットワークを用いた3次元脳磁気共鳴(MR)画像からの脳年齢回帰の課題に着目した。
予測モデルの性能を損なうことなく、できるだけ多くのノイズを入力に追加することを目的としたノイズモデルを実装した。
本手法は,英国バイオバンクの13750個の脳MR画像を用いて検討し,既存の神経病理学文献と一致している。
論文 参考訳(メタデータ) (2021-08-11T18:08:09Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
磁気共鳴画像(MRI)による脳年齢推定は、被験者の生物学的脳年齢と時系列年齢の違いを導出する。
より高年齢の神経変性を早期に検出することは、より良い医療と患者の計画を促進する可能性がある。
我々は、脳の3Dパッチと畳み込みニューラルネットワーク(CNN)を用いて、局所的な脳年齢推定器を開発する新しいディープラーニングアプローチを開発した。
論文 参考訳(メタデータ) (2020-08-29T11:50:37Z) - Anatomy-aware 3D Human Pose Estimation with Bone-based Pose
Decomposition [92.99291528676021]
3次元関節位置を直接回帰するのではなく,骨方向予測と骨長予測に分解する。
私たちのモチベーションは、人間の骨格の骨の長さが時間とともに一定であることにあります。
我々の完全なモデルは、Human3.6MとMPI-INF-3DHPデータセットにおいて、以前の最高の結果よりも優れています。
論文 参考訳(メタデータ) (2020-02-24T15:49:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。