Control landscape of measurement-assisted transition probability for a
three-level quantum system with dynamical symmetry
- URL: http://arxiv.org/abs/2307.07450v1
- Date: Fri, 14 Jul 2023 16:12:21 GMT
- Title: Control landscape of measurement-assisted transition probability for a
three-level quantum system with dynamical symmetry
- Authors: Maria Elovenkova and Alexander Pechen
- Abstract summary: Quantum systems with dynamical symmetries have conserved quantities which are preserved under coherent controls.
Incoherent control can increase the maximal attainable transition probability.
We show that all critical points are global maxima, global minima, saddle points and second order traps.
- Score: 77.34726150561087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum systems with dynamical symmetries have conserved quantities which are
preserved under coherent controls. Therefore such systems can not be completely
controlled by means of only coherent control. In particular, for such systems
maximal transition probability between some pair of states over all coherent
controls can be less than one. However, incoherent control can break this
dynamical symmetry and increase the maximal attainable transition probability.
Simplest example of such situation occurs in a three-level quantum system with
dynamical symmetry, for which maximal probability of transition between the
ground and the intermediate state by only coherent control is $1/2$, and by
coherent control assisted by incoherent control implemented by non-selective
measurement of the ground state is about $0.687$, as was previously
analytically computed. In this work we study and completely characterize all
critical points of the kinematic quantum control landscape for this
measurement-assisted transition probability, which is considered as a function
of the kinematic control parameters (Euler angles). This used in this work
measurement-driven control is different both from quantum feedback and
Zeno-type control. We show that all critical points are global maxima, global
minima, saddle points and second order traps. For comparison, we study the
transition probability between the ground and highest excited state, as well as
the case when both these transition probabilities are assisted by incoherent
control implemented by measurement of the intermediate state.
Related papers
- Concomitant Entanglement and Control Criticality Driven by Collective Measurements [0.0]
We study Adaptive quantum circuits where a quantum many-body state is controlled using measurements and conditional unitary operations.
We find two types of nonequilibrium quantum phase transitions: measurement-induced transitions between volume- and area-law-entangled steady states and control-induced transitions where the system falls into an absorbing state.
We attribute this feature and the apparent coincidence of the control and entanglement transitions to the global nature of the control.
arXiv Detail & Related papers (2024-09-10T18:00:03Z) - Local and nonlocal stochastic control of quantum chaos: Measurement- and control-induced criticality [0.0]
We study the universality of the phase diagram of a family of quantum models inspired by the classical Bernoulli map under topology control.
The quantum models inherit a control-induced phase transition from the classical model and also manifest an intrinsic entanglement phase transition to the quantum setting.
arXiv Detail & Related papers (2024-05-23T18:00:01Z) - Statistical Mechanics of Stochastic Quantum Control: $d$-adic Rényi Circuits [0.0]
We study the dynamics of quantum information in many-body systems with large onsite dimension quantities.
We reveal a connection between three separate models: the classically chaotic $d$-adic R'nyi map with universality control, a quantum analog of this map for qudits, and a Potts model on a random graph.
arXiv Detail & Related papers (2024-04-24T18:00:00Z) - Coherent control based on quantum Zeno and anti-Zeno effects: Role of
coherences and timing [0.0]
We consider how one can control the population flow from a coupled quantum state by measurement at a particular time.
We propose a framework for analysis of quantum Zeno dynamics based on time-dependent density matrix perturbation theory.
arXiv Detail & Related papers (2023-06-14T07:30:37Z) - Dynamical entanglement transition in the probabilistic control of chaos [0.0]
We uncover a dynamical entanglement transition in a monitored quantum system heralded by a local order parameter.
We show that such control transitions persist in open quantum systems where control is implemented with local measurements and unitary feedback.
Unlike other entanglement transitions in monitored quantum circuits, this transition can also be probed by correlation functions without resolving individual quantum trajectories.
arXiv Detail & Related papers (2022-07-25T18:00:01Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
This article considers some control problems for closed and open two-level quantum systems.
The closed system's dynamics is governed by the Schr"odinger equation with coherent control.
The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation.
arXiv Detail & Related papers (2022-05-05T09:08:03Z) - Reachable sets for two-level open quantum systems driven by coherent and
incoherent controls [77.34726150561087]
We study controllability in the set of all density matrices for a two-level open quantum system driven by coherent and incoherent controls.
For two coherent controls, the system is shown to be completely controllable in the set of all density matrices.
arXiv Detail & Related papers (2021-09-09T16:14:23Z) - Observing a Topological Transition in Weak-Measurement-Induced Geometric
Phases [55.41644538483948]
Weak measurements in particular, through their back-action on the system, may enable various levels of coherent control.
We measure the geometric phases induced by sequences of weak measurements and demonstrate a topological transition in the geometric phase controlled by measurement strength.
Our results open new horizons for measurement-enabled quantum control of many-body topological states.
arXiv Detail & Related papers (2021-02-10T19:00:00Z) - Universality of entanglement transitions from stroboscopic to continuous
measurements [68.8204255655161]
We show that the entanglement transition at finite coupling persists if the continuously measured system is randomly nonintegrable.
This provides a bridge between a wide range of experimental settings and the wealth of knowledge accumulated for the latter systems.
arXiv Detail & Related papers (2020-05-04T21:45:59Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.