Universality of entanglement transitions from stroboscopic to continuous
measurements
- URL: http://arxiv.org/abs/2005.01863v2
- Date: Fri, 20 Nov 2020 20:19:02 GMT
- Title: Universality of entanglement transitions from stroboscopic to continuous
measurements
- Authors: Marcin Szyniszewski, Alessandro Romito, Henning Schomerus
- Abstract summary: We show that the entanglement transition at finite coupling persists if the continuously measured system is randomly nonintegrable.
This provides a bridge between a wide range of experimental settings and the wealth of knowledge accumulated for the latter systems.
- Score: 68.8204255655161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Measurement-driven transitions between extensive and sub-extensive scaling of
the entanglement entropy receive interest as they illuminate the intricate
physics of thermalization and control in open interacting quantum systems.
Whilst this transition is well established for stroboscopic measurements in
random quantum circuits, a crucial link to physical settings is its extension
to continuous observations, where for an integrable model it has been shown
that the transition changes its nature and becomes immediate. Here, we
demonstrate that the entanglement transition at finite coupling persists if the
continuously measured system is randomly nonintegrable, and show that it is
smoothly connected to the transition in the stroboscopic models. This provides
a bridge between a wide range of experimental settings and the wealth of
knowledge accumulated for the latter systems.
Related papers
- Unraveling-induced entanglement phase transition in diffusive trajectories of continuously monitored noninteracting fermionic systems [0.0]
We show a transition from a phase with area-law entanglement to one where entanglement scales logarithmically with the system size.
Our findings may be relevant for tailoring quantum correlations in noisy quantum devices.
arXiv Detail & Related papers (2024-06-07T12:08:07Z) - Experimental demonstration of scalable cross-entropy benchmarking to
detect measurement-induced phase transitions on a superconducting quantum
processor [0.0]
We propose a protocol to detect entanglement phase transitions using linear cross-entropy.
We demonstrate this protocol in systems with one-dimensional and all-to-all connectivities on IBM's quantum hardware on up to 22 qubits.
Our demonstration paves the way for studies of measurement-induced entanglement phase transitions and associated critical phenomena on larger near-term quantum systems.
arXiv Detail & Related papers (2024-03-01T19:35:54Z) - Action formalism for geometric phases from self-closing quantum
trajectories [55.2480439325792]
We study the geometric phase of a subset of self-closing trajectories induced by a continuous Gaussian measurement of a single qubit system.
We show that the geometric phase of the most likely trajectories undergoes a topological transition for self-closing trajectories as a function of the measurement strength parameter.
arXiv Detail & Related papers (2023-12-22T15:20:02Z) - Dynamics and Phases of Nonunitary Floquet Transverse-Field Ising Model [0.5141137421503899]
We analyze the nonunitary Floquet- transverse-field I integrable model with complex nearest-neighbor couplings and complex transverse fields.
The scaling of entanglement entropy in steady states and the evolution after a quench are compatible with the non-Hermitian generalization of the quasiparticle picture of Calabrese and Cardy.
arXiv Detail & Related papers (2023-06-12T21:15:11Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Multipartite Entanglement in the Measurement-Induced Phase Transition of
the Quantum Ising Chain [77.34726150561087]
External monitoring of quantum many-body systems can give rise to a measurement-induced phase transition.
We show that this transition extends beyond bipartite correlations to multipartite entanglement.
arXiv Detail & Related papers (2023-02-13T15:54:11Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Dynamical quantum phase transitions in a spinor Bose-Einstein condensate
and criticality enhanced quantum sensing [2.3046646540823916]
Quantum phase transitions universally exist in the ground and excited states of quantum many-body systems.
We unravel that both the ground and excited-state quantum phase transitions in spinor condensates can be diagnosed with dynamical phase transitions.
This work advances the exploration of excited-state quantum phase transitions via a scheme that can immediately be applied to a broad class of few-mode quantum systems.
arXiv Detail & Related papers (2022-09-23T05:27:17Z) - Measurement-induced quantum criticality under continuous monitoring [0.0]
We investigate entanglement phase transitions from volume-law to area-law entanglement in a quantum many-body state under continuous position measurement.
We find the signatures of the transitions as peak structures in the mutual information as a function of measurement strength.
We propose a possible experimental setup to test the predicted entanglement transition based on the subsystem particle-number fluctuations.
arXiv Detail & Related papers (2020-04-24T19:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.