論文の概要: Population Expansion for Training Language Models with Private Federated
Learning
- arxiv url: http://arxiv.org/abs/2307.07477v1
- Date: Fri, 14 Jul 2023 16:59:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-17 13:15:08.321152
- Title: Population Expansion for Training Language Models with Private Federated
Learning
- Title(参考訳): 個人フェデレーション学習を用いた教育用言語モデルの人口拡大
- Authors: Tatsuki Koga, Congzheng Song, Martin Pelikan, Mona Chitnis
- Abstract要約: Federated Learning(FL)と差分プライバシ(DP)を組み合わせることで、分散デバイスと正式なプライバシ保証を備えた機械学習(ML)トレーニングが提供される。
デバイスが多ければ、DPを持つFLは、タイムリーな方法でパフォーマンスモデルを生成する。
人口が少ないアプリケーションでは、DPノイズが人口に反比例するため、モデルユーティリティが劣化するだけでなく、トレーニング遅延も増加する。
- 参考スコア(独自算出の注目度): 12.534875845363585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) combined with differential privacy (DP) offers
machine learning (ML) training with distributed devices and with a formal
privacy guarantee. With a large population of devices, FL with DP produces a
performant model in a timely manner. However, for applications with a smaller
population, not only does the model utility degrade as the DP noise is
inversely proportional to population, but also the training latency increases
since waiting for enough clients to become available from a smaller pool is
slower. In this work, we thus propose expanding the population based on domain
adaptation techniques to speed up the training and improves the final model
quality when training with small populations. We empirically demonstrate that
our techniques can improve the utility by 13% to 30% on real-world language
modeling datasets.
- Abstract(参考訳): Federated Learning(FL)と差分プライバシ(DP)を組み合わせることで、分散デバイスと正式なプライバシ保証を備えた機械学習(ML)トレーニングが提供される。
デバイスが多ければ、DPを持つFLは、タイムリーな方法でパフォーマンスモデルを生成する。
しかし、人口が少ないアプリケーションでは、dpノイズが人口に逆比例しているため、モデルユーティリティが劣化するだけでなく、より小さなプールから十分なクライアントが利用可能になるのを待つのが遅いため、トレーニング遅延が増加する。
そこで本研究では,学習を高速化するために,ドメイン適応技術に基づく人口拡大を提案し,少人数での訓練時の最終的なモデル品質を向上させる。
実世界の言語モデリングデータセットにおいて,我々の技術が有効性を13%から30%改善できることを実証的に実証した。
関連論文リスト
- CELLM: An Efficient Communication in Large Language Models Training for Federated Learning [0.0]
本論文は,フェデレートラーニング(FL)における大規模言語モデル(LLM)の効率的な学習手法の開発を目的とする。
まず,ローランク適応(LoRA)を用いて局所モデルトレーニングの計算負荷を削減する。
第2に、コミュニケーションコストを大幅に削減するために、トレーニング全体を通してスパース更新を通信します。
論文 参考訳(メタデータ) (2024-07-30T05:24:08Z) - Efficient Continual Pre-training by Mitigating the Stability Gap [68.49269649759005]
本研究では,Large Language Models (LLM) の継続事前学習における挙動について検討する。
固定された計算予算内でのLLM性能を向上させるための3つの効果的な戦略を提案する。
当社の戦略は,OpenLlama-3Bモデルの平均医療タスク性能を36.2%から40.7%に改善し,当初のトレーニング予算の40%に過ぎなかった。
論文 参考訳(メタデータ) (2024-06-21T02:28:37Z) - Multi-level Personalized Federated Learning on Heterogeneous and Long-Tailed Data [10.64629029156029]
マルチレベル・パーソナライズド・フェデレーション・ラーニング(MuPFL)という革新的パーソナライズド・パーソナライズド・ラーニング・フレームワークを導入する。
MuPFLは3つの重要なモジュールを統合している: Biased Activation Value Dropout (BAVD), Adaptive Cluster-based Model Update (ACMU), Prior Knowledge-assisted Fine-tuning (PKCF)。
様々な実世界のデータセットの実験では、MuPFLは極端に非i.d.と長い尾の条件下であっても、最先端のベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2024-05-10T11:52:53Z) - Speed Up Federated Learning in Heterogeneous Environment: A Dynamic
Tiering Approach [5.504000607257414]
フェデレートラーニング(FL)は、トレーニングデータを分散化してプライベートにしながら、モデルを協調的にトレーニングすることを可能にする。
FLを用いたモデルのトレーニングにおける重要な障害の1つは、様々なタスクサイズだけでなく、不均一な計算と通信能力を持つデバイスのリソース制約である。
本稿では、動的タイリングに基づくフェデレート学習(DTFL)システムを提案する。このシステムでは、遅いクライアントがモデルの一部を動的にサーバにオフロードし、リソース制約を緩和し、トレーニングを高速化する。
論文 参考訳(メタデータ) (2023-12-09T19:09:19Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
フェデレートラーニング(FL)は、複数の参加者が分散データソースを使用して機械学習モデルを協調的にトレーニングすることを可能にする。
FLにおけるモデルプライバシ保護の欠如は無視できない課題となっている。
そこで本研究では,ソフトプロンプトによって参加者間の情報交換を実現する新しいFLトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T11:01:10Z) - Can Public Large Language Models Help Private Cross-device Federated Learning? [58.05449579773249]
言語モデルのプライベート・フェデレーション・ラーニング(FL)について検討する。
公開データは、大小両方の言語モデルのプライバシーとユーティリティのトレードオフを改善するために使われてきた。
提案手法は,プライベートなデータ分布に近い公開データをサンプリングするための理論的基盤を持つ新しい分布マッチングアルゴリズムである。
論文 参考訳(メタデータ) (2023-05-20T07:55:58Z) - Training Large-Vocabulary Neural Language Models by Private Federated
Learning for Resource-Constrained Devices [14.604785223644718]
Federated Learning(FL)は、デバイスに分散したデータを使ってモデルをトレーニングするテクニックである。
差分プライバシー(DP)は、機密データに対して正式なプライバシー保証を提供する。
ペイロードサイズを小さくすることでノイズを低減できる部分埋め込み更新(PEU)を提案する。
論文 参考訳(メタデータ) (2022-07-18T23:53:17Z) - DisPFL: Towards Communication-Efficient Personalized Federated Learning
via Decentralized Sparse Training [84.81043932706375]
本稿では,分散型(ピアツーピア)通信プロトコルであるDis-PFLにおいて,新たな個人化フェデレーション学習フレームワークを提案する。
Dis-PFLはパーソナライズされたスパースマスクを使用して、エッジ上のスパースローカルモデルをカスタマイズする。
本手法は,計算複雑性の異なる異種ローカルクライアントに容易に適応できることを実証する。
論文 参考訳(メタデータ) (2022-06-01T02:20:57Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
フェデレートラーニング(Federated Learning, FedL)は、一連の無線デバイスにモデルトレーニングを配布する一般的なテクニックとして登場した。
我々は,FedLアーキテクチャを3次元に拡張した並列逐次学習(PSL)を開発した。
我々の分析は、分散機械学習におけるコールド対ウォームアップモデルの概念とモデル慣性について光を当てている。
論文 参考訳(メタデータ) (2022-02-07T05:11:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。