Generalizable Embeddings with Cross-batch Metric Learning
- URL: http://arxiv.org/abs/2307.07620v2
- Date: Mon, 24 Jul 2023 13:03:17 GMT
- Title: Generalizable Embeddings with Cross-batch Metric Learning
- Authors: Yeti Z. Gurbuz and A. Aydin Alatan
- Abstract summary: We formulate GAP as a convex combination of learnable prototypes.
We show that the prototype learning can be expressed as a iterative process fitting a linear predictor to a batch of samples.
Building on that perspective, we consider two batches of disjoint classes at each iteration and regularize the learning by expressing the samples of a batch with the prototypes that are fitted to the other batch.
- Score: 10.553094246710865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Global average pooling (GAP) is a popular component in deep metric learning
(DML) for aggregating features. Its effectiveness is often attributed to
treating each feature vector as a distinct semantic entity and GAP as a
combination of them. Albeit substantiated, such an explanation's algorithmic
implications to learn generalizable entities to represent unseen classes, a
crucial DML goal, remain unclear. To address this, we formulate GAP as a convex
combination of learnable prototypes. We then show that the prototype learning
can be expressed as a recursive process fitting a linear predictor to a batch
of samples. Building on that perspective, we consider two batches of disjoint
classes at each iteration and regularize the learning by expressing the samples
of a batch with the prototypes that are fitted to the other batch. We validate
our approach on 4 popular DML benchmarks.
Related papers
- Improved Diversity-Promoting Collaborative Metric Learning for Recommendation [127.08043409083687]
Collaborative Metric Learning (CML) has recently emerged as a popular method in recommendation systems.
This paper focuses on a challenging scenario where a user has multiple categories of interests.
We propose a novel method called textitDiversity-Promoting Collaborative Metric Learning (DPCML)
arXiv Detail & Related papers (2024-09-02T07:44:48Z) - ProtoGMM: Multi-prototype Gaussian-Mixture-based Domain Adaptation Model for Semantic Segmentation [0.8213829427624407]
Domain adaptive semantic segmentation aims to generate accurate and dense predictions for an unlabeled target domain.
We propose the ProtoGMM model, which incorporates the GMM into contrastive losses to perform guided contrastive learning.
To achieve increased intra-class semantic similarity, decreased inter-class similarity, and domain alignment between the source and target domains, we employ multi-prototype contrastive learning.
arXiv Detail & Related papers (2024-06-27T14:50:50Z) - Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
Multi-task learning (MTL) is a powerful machine learning paradigm designed to leverage shared knowledge across tasks to improve generalization and performance.
We propose an MTL approach at the intersection between task clustering and feature transformation based on a two-phase iterative aggregation of targets and features.
In both phases, a key aspect is to preserve the interpretability of the reduced targets and features through the aggregation with the mean, which is motivated by applications to Earth science.
arXiv Detail & Related papers (2024-06-12T08:30:16Z) - A Prototypical Semantic Decoupling Method via Joint Contrastive Learning
for Few-Shot Name Entity Recognition [24.916377682689955]
Few-shot named entity recognition (NER) aims at identifying named entities based on only few labeled instances.
We propose a Prototypical Semantic Decoupling method via joint Contrastive learning (PSDC) for few-shot NER.
Experimental results on two few-shot NER benchmarks demonstrate that PSDC consistently outperforms the previous SOTA methods in terms of overall performance.
arXiv Detail & Related papers (2023-02-27T09:20:00Z) - Coded Residual Transform for Generalizable Deep Metric Learning [34.100840501900706]
We introduce a new method called coded residual transform (CRT) for deep metric learning to significantly improve its generalization capability.
CRT represents and encodes the feature map from a set of complimentary perspectives based on projections onto diversified prototypes.
Our experimental results and ablation studies demonstrate that the proposed CRT method outperform the state-of-the-art deep metric learning methods by large margins.
arXiv Detail & Related papers (2022-10-09T06:17:31Z) - Meta-Causal Feature Learning for Out-of-Distribution Generalization [71.38239243414091]
This paper presents a balanced meta-causal learner (BMCL), which includes a balanced task generation module (BTG) and a meta-causal feature learning module (MCFL)
BMCL effectively identifies the class-invariant visual regions for classification and may serve as a general framework to improve the performance of the state-of-the-art methods.
arXiv Detail & Related papers (2022-08-22T09:07:02Z) - Dual Prototypical Contrastive Learning for Few-shot Semantic
Segmentation [55.339405417090084]
We propose a dual prototypical contrastive learning approach tailored to the few-shot semantic segmentation (FSS) task.
The main idea is to encourage the prototypes more discriminative by increasing inter-class distance while reducing intra-class distance in prototype feature space.
We demonstrate that the proposed dual contrastive learning approach outperforms state-of-the-art FSS methods on PASCAL-5i and COCO-20i datasets.
arXiv Detail & Related papers (2021-11-09T08:14:50Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z) - DiVA: Diverse Visual Feature Aggregation for Deep Metric Learning [83.48587570246231]
Visual Similarity plays an important role in many computer vision applications.
Deep metric learning (DML) is a powerful framework for learning such similarities.
We propose and study multiple complementary learning tasks, targeting conceptually different data relationships.
We learn a single model to aggregate their training signals, resulting in strong generalization and state-of-the-art performance.
arXiv Detail & Related papers (2020-04-28T12:26:50Z) - Revisiting Training Strategies and Generalization Performance in Deep
Metric Learning [28.54755295856929]
We revisit the most widely used DML objective functions and conduct a study of the crucial parameter choices.
Under consistent comparison, DML objectives show much higher saturation than indicated by literature.
Exploiting these insights, we propose a simple, yet effective, training regularization to reliably boost the performance of ranking-based DML models.
arXiv Detail & Related papers (2020-02-19T22:16:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.