Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis
- URL: http://arxiv.org/abs/2406.07991v1
- Date: Wed, 12 Jun 2024 08:30:16 GMT
- Title: Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis
- Authors: Paolo Bonetti, Alberto Maria Metelli, Marcello Restelli,
- Abstract summary: Multi-task learning (MTL) is a powerful machine learning paradigm designed to leverage shared knowledge across tasks to improve generalization and performance.
We propose an MTL approach at the intersection between task clustering and feature transformation based on a two-phase iterative aggregation of targets and features.
In both phases, a key aspect is to preserve the interpretability of the reduced targets and features through the aggregation with the mean, which is motivated by applications to Earth science.
- Score: 53.38518232934096
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-task learning (MTL) is a powerful machine learning paradigm designed to leverage shared knowledge across tasks to improve generalization and performance. Previous works have proposed approaches to MTL that can be divided into feature learning, focused on the identification of a common feature representation, and task clustering, where similar tasks are grouped together. In this paper, we propose an MTL approach at the intersection between task clustering and feature transformation based on a two-phase iterative aggregation of targets and features. First, we propose a bias-variance analysis for regression models with additive Gaussian noise, where we provide a general expression of the asymptotic bias and variance of a task, considering a linear regression trained on aggregated input features and an aggregated target. Then, we exploit this analysis to provide a two-phase MTL algorithm (NonLinCTFA). Firstly, this method partitions the tasks into clusters and aggregates each obtained group of targets with their mean. Then, for each aggregated task, it aggregates subsets of features with their mean in a dimensionality reduction fashion. In both phases, a key aspect is to preserve the interpretability of the reduced targets and features through the aggregation with the mean, which is further motivated by applications to Earth science. Finally, we validate the algorithms on synthetic data, showing the effect of different parameters and real-world datasets, exploring the validity of the proposed methodology on classical datasets, recent baselines, and Earth science applications.
Related papers
- Task Groupings Regularization: Data-Free Meta-Learning with Heterogeneous Pre-trained Models [83.02797560769285]
Data-Free Meta-Learning (DFML) aims to derive knowledge from a collection of pre-trained models without accessing their original data.
Current methods often overlook the heterogeneity among pre-trained models, which leads to performance degradation due to task conflicts.
We propose Task Groupings Regularization, a novel approach that benefits from model heterogeneity by grouping and aligning conflicting tasks.
arXiv Detail & Related papers (2024-05-26T13:11:55Z) - Modeling Output-Level Task Relatedness in Multi-Task Learning with Feedback Mechanism [7.479892725446205]
Multi-task learning (MTL) is a paradigm that simultaneously learns multiple tasks by sharing information at different levels.
We introduce a posteriori information into the model, considering that different tasks may produce correlated outputs with mutual influences.
We achieve this by incorporating a feedback mechanism into MTL models, where the output of one task serves as a hidden feature for another task.
arXiv Detail & Related papers (2024-04-01T03:27:34Z) - Multi-Task Learning Regression via Convex Clustering [0.0]
We propose an MTL method with a centroid parameter representing a cluster center of the task.
We show the effectiveness of the proposed method through Monte Carlo simulations and applications to real data.
arXiv Detail & Related papers (2023-04-26T07:25:21Z) - Multi-Task Learning on Networks [0.0]
Multi-objective optimization problems arising in the multi-task learning context have specific features and require adhoc methods.
In this thesis the solutions in the Input Space are represented as probability distributions encapsulating the knowledge contained in the function evaluations.
In this space of probability distributions, endowed with the metric given by the Wasserstein distance, a new algorithm MOEA/WST can be designed in which the model is not directly on the objective function.
arXiv Detail & Related papers (2021-12-07T09:13:10Z) - Semi-supervised Multi-task Learning for Semantics and Depth [88.77716991603252]
Multi-Task Learning (MTL) aims to enhance the model generalization by sharing representations between related tasks for better performance.
We propose the Semi-supervised Multi-Task Learning (MTL) method to leverage the available supervisory signals from different datasets.
We present a domain-aware discriminator structure with various alignment formulations to mitigate the domain discrepancy issue among datasets.
arXiv Detail & Related papers (2021-10-14T07:43:39Z) - Meta-Learning with Fewer Tasks through Task Interpolation [67.03769747726666]
Current meta-learning algorithms require a large number of meta-training tasks, which may not be accessible in real-world scenarios.
By meta-learning with task gradient (MLTI), our approach effectively generates additional tasks by randomly sampling a pair of tasks and interpolating the corresponding features and labels.
Empirically, in our experiments on eight datasets from diverse domains, we find that the proposed general MLTI framework is compatible with representative meta-learning algorithms and consistently outperforms other state-of-the-art strategies.
arXiv Detail & Related papers (2021-06-04T20:15:34Z) - Cluster-Specific Predictions with Multi-Task Gaussian Processes [4.368185344922342]
A model involving Gaussian processes (GPs) is introduced to handle multi-task learning, clustering, and prediction.
The model is instantiated as a mixture of multi-task GPs with common mean processes.
The overall algorithm, called MagmaClust, is publicly available as an R package.
arXiv Detail & Related papers (2020-11-16T11:08:59Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
We consider a problem known as multi-task learning, consisting of fitting a set of regression functions intended for solving different tasks.
In our novel formulation, we couple the parameters of these functions, so that they learn in their task specific domains while staying close to each other.
This facilitates cross-fertilization in which data collected across different domains help improving the learning performance at each other task.
arXiv Detail & Related papers (2020-10-24T21:35:57Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.