論文の概要: ExposureDiffusion: Learning to Expose for Low-light Image Enhancement
- arxiv url: http://arxiv.org/abs/2307.07710v1
- Date: Sat, 15 Jul 2023 04:48:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-18 18:18:45.262033
- Title: ExposureDiffusion: Learning to Expose for Low-light Image Enhancement
- Title(参考訳): exposurediffusion:低光度画像強調のための露光学習
- Authors: Yufei Wang, Yi Yu, Wenhan Yang, Lanqing Guo, Lap-Pui Chau, Alex C.
Kot, Bihan Wen
- Abstract要約: この研究は、拡散モデルと物理ベースの露光モデルとをシームレスに統合することで、この問題に対処する。
提案手法は,バニラ拡散モデルと比較して性能が大幅に向上し,推論時間を短縮する。
提案するフレームワークは、実際のペア付きデータセット、SOTAノイズモデル、および異なるバックボーンネットワークの両方で動作する。
- 参考スコア(独自算出の注目度): 86.1667769209103
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previous raw image-based low-light image enhancement methods predominantly
relied on feed-forward neural networks to learn deterministic mappings from
low-light to normally-exposed images. However, they failed to capture critical
distribution information, leading to visually undesirable results. This work
addresses the issue by seamlessly integrating a diffusion model with a
physics-based exposure model. Different from a vanilla diffusion model that has
to perform Gaussian denoising, with the injected physics-based exposure model,
our restoration process can directly start from a noisy image instead of pure
noise. As such, our method obtains significantly improved performance and
reduced inference time compared with vanilla diffusion models. To make full use
of the advantages of different intermediate steps, we further propose an
adaptive residual layer that effectively screens out the side-effect in the
iterative refinement when the intermediate results have been already
well-exposed. The proposed framework can work with both real-paired datasets,
SOTA noise models, and different backbone networks. Note that, the proposed
framework is compatible with real-paired datasets, real/synthetic noise models,
and different backbone networks. We evaluate the proposed method on various
public benchmarks, achieving promising results with consistent improvements
using different exposure models and backbones. Besides, the proposed method
achieves better generalization capacity for unseen amplifying ratios and better
performance than a larger feedforward neural model when few parameters are
adopted.
- Abstract(参考訳): 以前の生画像に基づく低照度画像強調手法は、主にフィードフォワードニューラルネットワークに頼り、低照度から通常露光画像への決定論的マッピングを学習した。
しかし、彼らは重要な分布情報の取得に失敗し、視覚的に望ましくない結果をもたらした。
本研究は拡散モデルと物理系露出モデルとをシームレスに統合することでこの問題に対処した。
ガウス音を発生させるバニラ拡散モデルと異なり, 物理系露出モデルでは, 純粋な雑音ではなく, ノイズ画像から直接復元を行うことができる。
そこで本手法は,バニラ拡散モデルと比較して性能と推論時間を大幅に改善する。
異なる中間段階の利点をフル活用するために, 中間結果が既に十分に提示されている場合に, 繰り返し改良の副作用を効果的に除去する適応残留層を提案する。
提案するフレームワークは、実際のペア付きデータセット、SOTAノイズモデル、および異なるバックボーンネットワークの両方で動作する。
提案するフレームワークは、実際のペア付きデータセット、実/合成ノイズモデル、異なるバックボーンネットワークと互換性がある。
提案手法は,様々な公開ベンチマークで評価し,異なる露光モデルとバックボーンを用いて一貫した改善を行い,有望な結果を得た。
また,提案手法は,パラメータの少ない大きなフィードフォワードニューラルモデルよりも,アンセンシング増幅率の一般化能力と優れた性能を実現する。
関連論文リスト
- Learning Diffusion Model from Noisy Measurement using Principled Expectation-Maximization Method [9.173055778539641]
本稿では,任意の破損型を持つ雑音データから拡散モデルを反復的に学習する,原則的予測最大化(EM)フレームワークを提案する。
筆者らはモンテカルロ法を用いて,ノイズ測定からクリーンな画像を正確に推定し,次いで再構成画像を用いて拡散モデルを訓練した。
論文 参考訳(メタデータ) (2024-10-15T03:54:59Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
ファインチューニング拡散モデル : 生成人工知能(GenAI)の最前線
本稿では,拡散モデル(SPIN-Diffusion)のための自己演奏ファインチューニングという革新的な手法を紹介する。
提案手法は従来の教師付き微調整とRL戦略の代替として,モデル性能とアライメントの両方を大幅に改善する。
論文 参考訳(メタデータ) (2024-02-15T18:59:18Z) - Blue noise for diffusion models [50.99852321110366]
本稿では,画像内および画像間の相関雑音を考慮した拡散モデルを提案する。
我々のフレームワークは、勾配流を改善するために、1つのミニバッチ内に画像間の相関を導入することができる。
本手法を用いて,各種データセットの質的,定量的な評価を行う。
論文 参考訳(メタデータ) (2024-02-07T14:59:25Z) - RANRAC: Robust Neural Scene Representations via Random Ray Consensus [12.161889666145127]
RANRAC(RANdom RAy Consensus)は、一貫性のないデータの影響を排除するための効率的な手法である。
我々はRANSACパラダイムのファジィ適応を定式化し、大規模モデルへの適用を可能にした。
その結果, 新規な視点合成のための最先端のロバストな手法と比較して, 顕著な改善が見られた。
論文 参考訳(メタデータ) (2023-12-15T13:33:09Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
拡散モデルは画像復元作業において有望な結果を得たが、時間を要する、過剰な計算資源消費、不安定な復元に悩まされている。
本稿では,DiffLLと呼ばれる高能率かつ高能率な拡散型低光画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T03:08:28Z) - Denoising Diffusion Models for Plug-and-Play Image Restoration [135.6359475784627]
本稿では,従来のプラグアンドプレイ方式を拡散サンプリングフレームワークに統合したDiffPIRを提案する。
DiffPIRは、差別的なガウスのデノイザーに依存するプラグアンドプレイIR法と比較して、拡散モデルの生成能力を継承することが期待されている。
論文 参考訳(メタデータ) (2023-05-15T20:24:38Z) - Real-World Denoising via Diffusion Model [14.722529440511446]
実世界のイメージデノイングは、自然の環境で撮影されたノイズの多い画像からクリーンなイメージを復元することを目的としている。
拡散モデルは画像生成の分野で非常に有望な結果を得た。
本稿では,実世界の画像のデノナイズに使用可能な,新しい一般デノナイズ拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-05-08T04:48:03Z) - Retinex Image Enhancement Based on Sequential Decomposition With a
Plug-and-Play Framework [16.579397398441102]
画像強調とノイズ除去を同時に行うために,Retinex理論に基づくプラグイン・アンド・プレイ・フレームワークを設計する。
我々のフレームワークは、画像の強調とデノーミングの両面で最先端の手法に勝っている。
論文 参考訳(メタデータ) (2022-10-11T13:29:10Z) - Deblurring via Stochastic Refinement [85.42730934561101]
条件付き拡散モデルに基づくブラインドデブロアリングのための代替フレームワークを提案する。
提案手法は,PSNRなどの歪み指標の点で競合する。
論文 参考訳(メタデータ) (2021-12-05T04:36:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。