One-Step Diffusion Model for Image Motion-Deblurring
- URL: http://arxiv.org/abs/2503.06537v1
- Date: Sun, 09 Mar 2025 09:39:57 GMT
- Title: One-Step Diffusion Model for Image Motion-Deblurring
- Authors: Xiaoyang Liu, Yuquan Wang, Zheng Chen, Jiezhang Cao, He Zhang, Yulun Zhang, Xiaokang Yang,
- Abstract summary: We propose a one-step diffusion model for deblurring (OSDD), a novel framework that reduces the denoising process to a single step.<n>To tackle fidelity loss in diffusion models, we introduce an enhanced variational autoencoder (eVAE), which improves structural restoration.<n>Our method achieves strong performance on both full and no-reference metrics.
- Score: 85.76149042561507
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Currently, methods for single-image deblurring based on CNNs and transformers have demonstrated promising performance. However, these methods often suffer from perceptual limitations, poor generalization ability, and struggle with heavy or complex blur. While diffusion-based methods can partially address these shortcomings, their multi-step denoising process limits their practical usage. In this paper, we conduct an in-depth exploration of diffusion models in deblurring and propose a one-step diffusion model for deblurring (OSDD), a novel framework that reduces the denoising process to a single step, significantly improving inference efficiency while maintaining high fidelity. To tackle fidelity loss in diffusion models, we introduce an enhanced variational autoencoder (eVAE), which improves structural restoration. Additionally, we construct a high-quality synthetic deblurring dataset to mitigate perceptual collapse and design a dynamic dual-adapter (DDA) to enhance perceptual quality while preserving fidelity. Extensive experiments demonstrate that our method achieves strong performance on both full and no-reference metrics. Our code and pre-trained model will be publicly available at https://github.com/xyLiu339/OSDD.
Related papers
- AB-Cache: Training-Free Acceleration of Diffusion Models via Adams-Bashforth Cached Feature Reuse [19.13826316844611]
Diffusion models have demonstrated remarkable success in generative tasks, yet their iterative denoising process results in slow inference.
We provide a theoretical understanding by analyzing the denoising process through the second-order Adams-Bashforth method.
We propose a novel caching-based acceleration approach for diffusion models, instead of directly reusing cached results.
arXiv Detail & Related papers (2025-04-13T08:29:58Z) - A Simple Combination of Diffusion Models for Better Quality Trade-Offs in Image Denoising [43.44633086975204]
We propose an intuitive method for leveraging pretrained diffusion models.
We then introduce our proposed Linear Combination Diffusion Denoiser.
LCDD achieves state-of-the-art performance and offers controlled, well-behaved trade-offs.
arXiv Detail & Related papers (2025-03-18T19:02:19Z) - Optimizing for the Shortest Path in Denoising Diffusion Model [8.884907787678731]
Shortest Path Diffusion Model (ShortDF) treats the denoising process as a shortest-path problem aimed at minimizing reconstruction error.<n>Experiments on multiple standard benchmarks demonstrate that ShortDF significantly reduces diffusion time (or steps)<n>This work, we suppose, paves the way for interactive diffusion-based applications and establishes a foundation for rapid data generation.
arXiv Detail & Related papers (2025-03-05T08:47:36Z) - One Diffusion Step to Real-World Super-Resolution via Flow Trajectory Distillation [60.54811860967658]
FluxSR is a novel one-step diffusion Real-ISR based on flow matching models.<n>First, we introduce Flow Trajectory Distillation (FTD) to distill a multi-step flow matching model into a one-step Real-ISR.<n>Second, to improve image realism and address high-frequency artifact issues in generated images, we propose TV-LPIPS as a perceptual loss.
arXiv Detail & Related papers (2025-02-04T04:11:29Z) - Unleashing the Power of One-Step Diffusion based Image Super-Resolution via a Large-Scale Diffusion Discriminator [81.81748032199813]
Diffusion models have demonstrated excellent performance for real-world image super-resolution (Real-ISR)<n>We propose a new One-Step textbfDiffusion model with a larger-scale textbfDiscriminator for SR.<n>Our discriminator is able to distill noisy features from any time step of diffusion models in the latent space.
arXiv Detail & Related papers (2024-10-05T16:41:36Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI)
In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion)
Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment.
arXiv Detail & Related papers (2024-02-15T18:59:18Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.