論文の概要: Contrastive Multi-Task Dense Prediction
- arxiv url: http://arxiv.org/abs/2307.07934v1
- Date: Sun, 16 Jul 2023 03:54:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-18 17:02:18.231464
- Title: Contrastive Multi-Task Dense Prediction
- Title(参考訳): コントラスト型マルチタスクデンス予測
- Authors: Siwei Yang, Hanrong Ye, Dan Xu
- Abstract要約: 設計における中核的な目的は、異なるタスクに対する包括的な改善を達成するために、クロスタスクインタラクションを効果的にモデル化する方法である。
マルチタスク密接な予測のためのクロスタスク相互作用のモデル化に特徴的コントラスト整合を導入する。
本稿では,各サブタスクの表現学習を効果的に促進するために,一貫性に基づく新しいマルチタスクコントラスト正規化手法を提案する。
- 参考スコア(独自算出の注目度): 11.227696986100447
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper targets the problem of multi-task dense prediction which aims to
achieve simultaneous learning and inference on a bunch of multiple dense
prediction tasks in a single framework. A core objective in design is how to
effectively model cross-task interactions to achieve a comprehensive
improvement on different tasks based on their inherent complementarity and
consistency. Existing works typically design extra expensive distillation
modules to perform explicit interaction computations among different
task-specific features in both training and inference, bringing difficulty in
adaptation for different task sets, and reducing efficiency due to clearly
increased size of multi-task models. In contrast, we introduce feature-wise
contrastive consistency into modeling the cross-task interactions for
multi-task dense prediction. We propose a novel multi-task contrastive
regularization method based on the consistency to effectively boost the
representation learning of the different sub-tasks, which can also be easily
generalized to different multi-task dense prediction frameworks, and costs no
additional computation in the inference. Extensive experiments on two
challenging datasets (i.e. NYUD-v2 and Pascal-Context) clearly demonstrate the
superiority of the proposed multi-task contrastive learning approach for dense
predictions, establishing new state-of-the-art performances.
- Abstract(参考訳): 本稿では,複数の高密度な予測タスクを1つのフレームワークで同時に学習し,推論することを目的としたマルチタスク高密度予測問題を提案する。
設計の核となる目標は、タスク間の相互作用を効果的にモデル化し、それらの固有の相補性と一貫性に基づいて異なるタスクの包括的な改善を達成する方法である。
既存の研究は、訓練と推論の両方において異なるタスク固有の特徴間の明示的な相互作用計算を実行するために、余分な高価な蒸留モジュールを設計し、異なるタスクセットへの適応が困難になり、マルチタスクモデルのサイズが明らかに大きくなるために効率が低下する。
対照的に、マルチタスク密接な予測のためのクロスタスク相互作用のモデル化に、機能的コントラスト整合を導入する。
本稿では,異なるサブタスクの表現学習を効果的に促進するために,一貫性に基づく新しいマルチタスクコントラスト正規化手法を提案する。
2つの挑戦的データセット(例えばNYUD-v2とPascal-Context)に対する大規模な実験は、高密度予測のためのマルチタスクコントラスト学習アプローチの優位性を明確に示し、新しい最先端のパフォーマンスを確立する。
関連論文リスト
- A Multitask Deep Learning Model for Classification and Regression of Hyperspectral Images: Application to the large-scale dataset [44.94304541427113]
ハイパースペクトル画像上で複数の分類タスクと回帰タスクを同時に行うマルチタスク深層学習モデルを提案する。
我々は、TAIGAと呼ばれる大規模なハイパースペクトルデータセットに対するアプローチを検証した。
結果の総合的定性的および定量的分析により,提案手法が他の最先端手法よりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2024-07-23T11:14:54Z) - DiffusionMTL: Learning Multi-Task Denoising Diffusion Model from Partially Annotated Data [16.501973201535442]
我々は,部分ラベル付きマルチタスクの高密度予測を画素レベルの分解問題として再検討する。
本稿では,DiffusionMTLと呼ばれる新しいマルチタスク・デノナイズ・フレームワークを提案する。
タスク予測や特徴写像の潜在的なノイズ分布をモデル化するために、共用拡散・雑音化パラダイムを設計する。
論文 参考訳(メタデータ) (2024-03-22T17:59:58Z) - Leveraging convergence behavior to balance conflicting tasks in
multi-task learning [3.6212652499950138]
マルチタスク学習は、パフォーマンスの一般化を改善するために相関タスクを使用する。
タスクは互いに衝突することが多いため、複数のタスクの勾配をどのように組み合わせるべきかを定義するのは難しい。
バックプロパゲーション中の各タスクの重要度を調整する動的バイアスを生成するために,勾配の時間的挙動を考慮した手法を提案する。
論文 参考訳(メタデータ) (2022-04-14T01:52:34Z) - In Defense of the Unitary Scalarization for Deep Multi-Task Learning [121.76421174107463]
本稿では,多くの特殊マルチタスクを正規化の形式として解釈できることを示唆する理論解析について述べる。
標準正規化と安定化技術と組み合わせると、ユニタリスカラー化は複雑なマルチタスクの性能にマッチし、改善することを示す。
論文 参考訳(メタデータ) (2022-01-11T18:44:17Z) - Cross-Task Consistency Learning Framework for Multi-Task Learning [9.991706230252708]
2タスクMTL問題に対する新しい学習フレームワークを提案する。
サイクル一貫性損失とコントラスト学習に着想を得た2つの新たな損失項を定義する。
理論的には、どちらの損失もモデルをより効率的に学習する助けとなり、直進予測と整合する点において、クロスタスクの整合性損失がより良いことを証明している。
論文 参考訳(メタデータ) (2021-11-28T11:55:19Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
マルチタスク学習は、タスク関連性を探究し、個々のタスクを改善することを目的としている。
本稿では,複数のタスクを学習するための一般的な確率的推論フレームワークである変分マルチタスク学習(VMTL)を提案する。
論文 参考訳(メタデータ) (2021-11-09T18:49:45Z) - Small Towers Make Big Differences [59.243296878666285]
マルチタスク学習は、複数の機械学習タスクを同時に解決することを目的としている。
マルチタスク学習問題に対する優れた解法は、Paretoの最適性に加えて一般化可能であるべきである。
本稿では,マルチタスクモデルのためのパラメータ下自己助詞の手法を提案し,両世界のベストを達成した。
論文 参考訳(メタデータ) (2020-08-13T10:45:31Z) - Reparameterizing Convolutions for Incremental Multi-Task Learning
without Task Interference [75.95287293847697]
マルチタスクモデルを開発する際の2つの一般的な課題は、しばしば文献で見過ごされる。
まず、モデルを本質的に漸進的に可能にし、以前に学んだことを忘れずに新しいタスクから情報を継続的に取り入れる(インクリメンタルラーニング)。
第二に、タスク間の有害な相互作用を排除し、マルチタスク設定(タスク干渉)においてシングルタスクのパフォーマンスを著しく低下させることが示されている。
論文 参考訳(メタデータ) (2020-07-24T14:44:46Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
マルチタスク学習(MTL)技術は、性能、計算、メモリフットプリントに関する有望な結果を示している。
我々は、コンピュータビジョンにおけるMLLのための最先端のディープラーニングアプローチについて、よく理解された視点を提供する。
論文 参考訳(メタデータ) (2020-04-28T09:15:50Z) - Gradient Surgery for Multi-Task Learning [119.675492088251]
マルチタスク学習は、複数のタスク間で構造を共有するための有望なアプローチとして登場した。
マルチタスク学習がシングルタスク学習と比較して難しい理由は、完全には理解されていない。
本稿では,他の作業の勾配の正規平面上にタスクの勾配を投影する勾配手術の一形態を提案する。
論文 参考訳(メタデータ) (2020-01-19T06:33:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。