論文の概要: Unifying Token and Span Level Supervisions for Few-Shot Sequence
Labeling
- arxiv url: http://arxiv.org/abs/2307.07946v1
- Date: Sun, 16 Jul 2023 04:50:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-18 16:51:00.058326
- Title: Unifying Token and Span Level Supervisions for Few-Shot Sequence
Labeling
- Title(参考訳): Few-Shot Sequence Labelingにおけるトークンとスパンレベルの統一化
- Authors: Zifeng Cheng, Qingyu Zhou, Zhiwei Jiang, Xuemin Zhao, Yunbo Cao, Qing
Gu
- Abstract要約: 短いショットシーケンスラベリングは、少数のラベル付きサンプルに基づいて新しいクラスを特定することを目的としている。
本稿では,数ショットのシーケンスラベリングのためのCDAP(Consistent Dual Adaptive Prototypeal)ネットワークを提案する。
本モデルでは,3つのベンチマークデータセットに対して,最先端の新たな結果が得られる。
- 参考スコア(独自算出の注目度): 18.24907067631541
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot sequence labeling aims to identify novel classes based on only a few
labeled samples. Existing methods solve the data scarcity problem mainly by
designing token-level or span-level labeling models based on metric learning.
However, these methods are only trained at a single granularity (i.e., either
token level or span level) and have some weaknesses of the corresponding
granularity. In this paper, we first unify token and span level supervisions
and propose a Consistent Dual Adaptive Prototypical (CDAP) network for few-shot
sequence labeling. CDAP contains the token-level and span-level networks,
jointly trained at different granularities. To align the outputs of two
networks, we further propose a consistent loss to enable them to learn from
each other. During the inference phase, we propose a consistent greedy
inference algorithm that first adjusts the predicted probability and then
greedily selects non-overlapping spans with maximum probability. Extensive
experiments show that our model achieves new state-of-the-art results on three
benchmark datasets.
- Abstract(参考訳): 短いショットシーケンスラベリングは、少数のラベル付きサンプルに基づいて新しいクラスを特定することを目的としている。
既存の手法は、主にメトリクス学習に基づくトークンレベルまたはスパンレベルのラベルモデルを設計することで、データの不足問題を解決する。
しかしながら、これらの方法は単一の粒度(トークンレベルまたはスパンレベル)でのみ訓練され、対応する粒度にいくつかの弱点がある。
本稿では,まずトークンとスパンレベルの監視を統一し,数ショットのシーケンスラベリングのための一貫性デュアル適応型(CDAP)ネットワークを提案する。
CDAPにはトークンレベルとスパンレベルのネットワークが含まれており、異なる粒度で共同で訓練されている。
2つのネットワークの出力を調整するために,我々は,相互に学習できる一貫性のある損失を提案する。
推定段階では,まず予測確率を調整し,次に最大確率で非重複スパンを選択する一貫した欲求推論アルゴリズムを提案する。
大規模実験の結果,3つのベンチマークデータセットにおいて,新たな最先端結果が得られた。
関連論文リスト
- RankMatch: A Novel Approach to Semi-Supervised Label Distribution
Learning Leveraging Inter-label Correlations [52.549807652527306]
本稿では,SSLDL (Semi-Supervised Label Distribution Learning) の革新的なアプローチである RankMatch を紹介する。
RankMatchは、ラベルのない大量のデータとともに、少数のラベル付き例を効果的に活用する。
我々はRandMatchに縛られる理論的な一般化を確立し、広範な実験を通じて既存のSSLDL法に対する性能上の優位性を実証した。
論文 参考訳(メタデータ) (2023-12-11T12:47:29Z) - JointMatch: A Unified Approach for Diverse and Collaborative
Pseudo-Labeling to Semi-Supervised Text Classification [65.268245109828]
半教師付きテキスト分類(SSTC)は、ラベルのないデータを活用する能力によって注目を集めている。
擬似ラベルに基づく既存のアプローチは、擬似ラベルバイアスと誤り蓄積の問題に悩まされる。
我々は、最近の半教師付き学習からアイデアを統一することでこれらの課題に対処する、SSTCの総合的なアプローチであるJointMatchを提案する。
論文 参考訳(メタデータ) (2023-10-23T05:43:35Z) - Learning from Label Proportions: Bootstrapping Supervised Learners via Belief Propagation [18.57840057487926]
LLP(Learning from Label Proportions)は、トレーニング中にバッグと呼ばれるインスタンスのグループに対して、アグリゲートレベルのラベルしか利用できない学習問題である。
この設定は、プライバシー上の配慮から、広告や医療などの領域で発生する。
本稿では,この問題に対して,反復的に2つの主要なステップを実行する新しいアルゴリズムフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-12T06:09:26Z) - Ambiguity-Resistant Semi-Supervised Learning for Dense Object Detection [98.66771688028426]
本研究では,一段階検出器のためのAmbiguity-Resistant Semi-supervised Learning (ARSL)を提案する。
擬似ラベルの分類とローカライズ品質を定量化するために,JCE(Joint-Confidence Estimation)を提案する。
ARSLは、曖昧さを効果的に軽減し、MS COCOおよびPASCALVOC上で最先端のSSOD性能を達成する。
論文 参考訳(メタデータ) (2023-03-27T07:46:58Z) - Label Matching Semi-Supervised Object Detection [85.99282969977541]
半教師対象検出は,教師主導型自己学習の開発において大きな進歩を遂げている。
ラベルミスマッチ問題は、以前の研究でまだ完全に解明されていないため、自己学習中に重大な確証バイアスが生じる。
本稿では,2つの異なる相補的視点から,単純かつ効果的な LabelMatch フレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-14T05:59:41Z) - Compare learning: bi-attention network for few-shot learning [6.559037166322981]
距離学習と呼ばれる数ショットの学習手法の1つは、画像のペアが同じカテゴリに属しているかどうかを判断するために、まず遠距離計量を学習することで、この課題に対処する。
本稿では, インスタンスの埋め込みの類似性を正確に, グローバルかつ効率的に測定できる, Bi-attention Network という新しい手法を提案する。
論文 参考訳(メタデータ) (2022-03-25T07:39:10Z) - CLS: Cross Labeling Supervision for Semi-Supervised Learning [9.929229055862491]
Cross Labeling Supervision (CLS) は、典型的な擬似ラベル処理を一般化するフレームワークである。
CLSは擬似ラベルと相補ラベルの両方を作成でき、正と負の両方の学習をサポートする。
論文 参考訳(メタデータ) (2022-02-17T08:09:40Z) - S3: Supervised Self-supervised Learning under Label Noise [53.02249460567745]
本稿では,ラベルノイズの存在下での分類の問題に対処する。
提案手法の核心は,サンプルのアノテートラベルと特徴空間内のその近傍のラベルの分布との整合性に依存するサンプル選択機構である。
提案手法は,CIFARCIFAR100とWebVisionやANIMAL-10Nなどの実環境ノイズデータセットの両方で,従来の手法をはるかに上回っている。
論文 参考訳(メタデータ) (2021-11-22T15:49:20Z) - Dash: Semi-Supervised Learning with Dynamic Thresholding [72.74339790209531]
我々は、ラベルのない例を使ってモデルをトレーニングする半教師付き学習(SSL)アプローチを提案する。
提案手法であるDashは、ラベルなしデータ選択の観点から適応性を享受する。
論文 参考訳(メタデータ) (2021-09-01T23:52:29Z) - PAL : Pretext-based Active Learning [2.869739951301252]
提案手法は,従来の提案手法よりも,誤ラベルに頑健な深層ニューラルネットワークの能動的学習手法を提案する。
ラベルのないサンプルを選別するために、別ネットワークを使用します。
その結果,ラベルノイズの欠如による競合精度も向上した。
論文 参考訳(メタデータ) (2020-10-29T21:16:37Z) - Instance Credibility Inference for Few-Shot Learning [45.577880041135785]
ほとんどショットラーニングは、カテゴリごとに非常に限られたトレーニングデータを持つ新しいオブジェクトを認識することを目的としていない。
本稿では,未ラベルのインスタンスの分散サポートを数発の学習に活用するために,ICI (Instance Credibility Inference) と呼ばれる単純な統計手法を提案する。
我々の単純なアプローチは、広く使われている4つのショットラーニングベンチマークデータセットに基づいて、最先端の新たなデータセットを確立することができる。
論文 参考訳(メタデータ) (2020-03-26T12:01:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。