A superconducting quantum information processor with high qubit
connectivity
- URL: http://arxiv.org/abs/2307.08101v1
- Date: Sun, 16 Jul 2023 16:58:50 GMT
- Title: A superconducting quantum information processor with high qubit
connectivity
- Authors: G\"urkan Kartal, George Simion, Bart Sor\'ee
- Abstract summary: Coupling of transmon qubits to resonators that serve as storage for information provides alternative routes for quantum computing.
We propose an architecture that incorporates the four-wave mixing capabilities of the transmon into a chain of resonators coupled collectively by qubits in between.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coupling of transmon qubits to resonators that serve as storage for
information provides alternative routes for quantum computing. Such a scheme
paves the way for achieving high qubit connectivity, which is a great challenge
in cQED systems. Implementations either involve an ancillary transmon's direct
excitation, or virtual photon interactions. Virtual coupling scheme promises
advantages such as the parallel, virtual gate operations and better coherence
properties since the transmon's decoherence effects are suppressed. However,
virtual gates rely on nonuniform frequency separation of the modes in the
system and acquiring this feature is not a straightforward task. Here, we
propose an architecture that incorporates the four-wave mixing capabilities of
the transmon into a chain of resonators coupled collectively by qubits in
between. The system, consisting of numerous resonators all operating within the
single mode approximation, maintains the above-mentioned nonuniformity by
accommodating different resonators with appropriate frequencies.
Related papers
- Crosstalk-Robust Quantum Control in Multimode Bosonic Systems [34.03303487556571]
High-coherence superconducting cavities offer a hardware-efficient platform for quantum information processing.
To achieve universal operations of bosonic modes, the requisite nonlinearity is realized by coupling them to a transmon ancilla.
We employ quantum optimal control to engineer ancilla pulses that are robust to the frequency shifts.
arXiv Detail & Related papers (2024-03-01T04:33:12Z) - On-demand transposition across light-matter interaction regimes in
bosonic cQED [69.65384453064829]
Bosonic cQED employs the light field of high-Q superconducting cavities coupled to non-linear circuit elements.
We present the first experiment to achieve fast switching of the interaction regime without deteriorating the cavity coherence.
Our work opens up a new paradigm to probe the full range of light-matter interaction dynamics within a single platform.
arXiv Detail & Related papers (2023-12-22T13:01:32Z) - Fast ZZ-Free Entangling Gates for Superconducting Qubits Assisted by a
Driven Resonator [42.152052307404]
We propose a simple scheme to cancel stray interactions between qubits.
We numerically show that such a scheme can enable short and high-fidelity entangling gates.
Our architecture is not only ZZ free but also contains no extra noisy components.
arXiv Detail & Related papers (2023-11-02T15:42:02Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Suppression of crosstalk in superconducting qubits using dynamical
decoupling [0.0]
Super superconducting quantum processors with interconnected transmon qubits are noisy and prone to various errors.
ZZ-coupling between qubits in fixed frequency transmon architectures is always present and contributes to both coherent and incoherent crosstalk errors.
We propose the use of dynamical decoupling to suppress the crosstalk, and demonstrate the success of this scheme through experiments on several IBM quantum cloud processors.
arXiv Detail & Related papers (2021-08-10T09:16:05Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - Hardware-Efficient Microwave-Activated Tunable Coupling Between
Superconducting Qubits [0.0]
We realize a tunable $ZZ$ interaction between two transmon qubits with fixed frequencies and fixed coupling.
Because both transmons are driven, it is resilient to microwave crosstalk.
We apply this interaction to implement a controlled phase (CZ) gate with a gate fidelity of $99.43(1)%$ as measured by cycle benchmarking.
arXiv Detail & Related papers (2021-05-12T01:06:08Z) - Interference-based universal decoupling and swapping for multimode
bosonic systems [2.8655318786364408]
In hybrid quantum systems, it might be challenging to implement a reliable beam-splitter operation between two distinct bosonic modes.
We develop novel interference-based protocols for decoupling and swapping selected modes of a multimode bosonic system without requiring beam-splitters.
arXiv Detail & Related papers (2020-07-05T16:56:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.