論文の概要: Efficient Computation of Counterfactual Bounds
- arxiv url: http://arxiv.org/abs/2307.08304v3
- Date: Mon, 4 Dec 2023 14:30:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-05 22:58:49.815708
- Title: Efficient Computation of Counterfactual Bounds
- Title(参考訳): 反事実境界の効率的な計算
- Authors: Marco Zaffalon and Alessandro Antonucci and Rafael Caba\~nas and David
Huber and Dario Azzimonti
- Abstract要約: 我々は,構造因果モデルのサブクラスにおけるクレダルネットのアルゴリズムを用いて,正確な反ファクト境界を計算する。
近似の精度を信頼性のある間隔で評価する。
- 参考スコア(独自算出の注目度): 44.4263314637532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We assume to be given structural equations over discrete variables inducing a
directed acyclic graph, namely, a structural causal model, together with data
about its internal nodes. The question we want to answer is how we can compute
bounds for partially identifiable counterfactual queries from such an input. We
start by giving a map from structural casual models to credal networks. This
allows us to compute exact counterfactual bounds via algorithms for credal nets
on a subclass of structural causal models. Exact computation is going to be
inefficient in general given that, as we show, causal inference is NP-hard even
on polytrees. We target then approximate bounds via a causal EM scheme. We
evaluate their accuracy by providing credible intervals on the quality of the
approximation; we show through a synthetic benchmark that the EM scheme
delivers accurate results in a fair number of runs. In the course of the
discussion, we also point out what seems to be a neglected limitation to the
trending idea that counterfactual bounds can be computed without knowledge of
the structural equations. We also present a real case study on palliative care
to show how our algorithms can readily be used for practical purposes.
- Abstract(参考訳): 我々は、有向非巡回グラフ、すなわち構造因果モデルを誘導する離散変数に対する構造方程式と、その内部ノードに関するデータとを仮定する。
私たちが答えたい質問は、そのような入力から部分的に識別可能な偽のクエリの境界を計算する方法です。
まず、構造的なカジュアルモデルからクレダルネットワークへのマップを提供することから始めます。
これにより、構造因果モデルのサブクラスにおけるクレダルネットのアルゴリズムによって、正確な反ファクト境界を計算することができる。
因果推論がポリツリー上でもNPハードであることを考えると、厳密な計算は一般に非効率である。
次に、因果EMスキームを用いて近似境界を求める。
近似のクオリティについて信頼性の高い間隔を提供することで精度を評価するとともに、emスキームがかなりの数のランで正確な結果をもたらすことを合成ベンチマークで示す。
議論の過程では、反事実境界は構造方程式の知識なしに計算できるというトレンドのアイデアに対する無視された制限が指摘される。
また,我々のアルゴリズムが実用的用途にどのように利用できるかを示すために,緩和ケアに関する実際のケーススタディも提示する。
関連論文リスト
- Graph-based Complexity for Causal Effect by Empirical Plug-in [56.14597641617531]
本稿では、因果効果クエリに対する経験的プラグイン推定の計算複雑性に焦点を当てる。
計算は、推定値のハイパーグラフに依存するため、データサイズにおいて、潜在的に線形な時間で効率的に行うことができることを示す。
論文 参考訳(メタデータ) (2024-11-15T07:42:01Z) - Discrete Neural Algorithmic Reasoning [18.497863598167257]
本稿では,有限状態の組合せとして,ニューラル推論器に実行軌跡の維持を強制することを提案する。
アルゴリズムの状態遷移の監督で訓練されたモデルでは、元のアルゴリズムと完全に整合することができる。
論文 参考訳(メタデータ) (2024-02-18T16:03:04Z) - Tractable Bounding of Counterfactual Queries by Knowledge Compilation [51.47174989680976]
本稿では, パール構造因果モデルにおいて, 因果関係などの部分的特定可能なクエリのバウンダリングの問題について議論する。
最近提案された反復EMスキームは初期化パラメータをサンプリングしてそれらの境界を内部近似する。
シンボルパラメータを実際の値に置き換えた回路構造を,単一のシンボル知識コンパイルによって得られることを示す。
論文 参考訳(メタデータ) (2023-10-05T07:10:40Z) - Structure Learning and Parameter Estimation for Graphical Models via
Penalized Maximum Likelihood Methods [0.0]
論文では、静的なベイジアンネットワーク(BN)と、その名前が示すように時間成分を持つ連続時間ベイジアンネットワークという2つの異なるタイプのPGMについて考察する。
私たちは、PGMを学ぶための最初のステップである、真の構造を回復することに興味を持っています。
論文 参考訳(メタデータ) (2023-01-30T20:26:13Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Causal Expectation-Maximisation [70.45873402967297]
ポリツリーグラフを特徴とするモデルにおいても因果推論はNPハードであることを示す。
我々は因果EMアルゴリズムを導入し、分類的表現変数のデータから潜伏変数の不確かさを再構築する。
我々は、反事実境界が構造方程式の知識なしにしばしば計算できるというトレンドのアイデアには、目立たずの制限があるように思える。
論文 参考訳(メタデータ) (2020-11-04T10:25:13Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
因果推論は、干潟網の更新のための標準的なアルゴリズムによって得ることができる。
この貢献は, 干潟ネットワークによる構造因果モデルを表現するための体系的なアプローチと見なされるべきである。
実験により, 実規模問題における因果推論には, クレーダルネットワークの近似アルゴリズムがすぐに利用できることがわかった。
論文 参考訳(メタデータ) (2020-08-02T11:19:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。