Efficient and Accurate Optimal Transport with Mirror Descent and
Conjugate Gradients
- URL: http://arxiv.org/abs/2307.08507v2
- Date: Tue, 31 Oct 2023 04:21:31 GMT
- Title: Efficient and Accurate Optimal Transport with Mirror Descent and
Conjugate Gradients
- Authors: Mete Kemertas, Allan D. Jepson, Amir-massoud Farahmand
- Abstract summary: We design a novel algorithm for optimal transport by drawing from the entropic optimal transport, mirror descent and conjugate gradients literatures.
Our scalable and GPU parallelizable algorithm is able to compute the Wasserstein distance with extreme precision, reaching relative error rates of $10-8$ without numerical stability issues.
- Score: 15.128885770407132
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We design a novel algorithm for optimal transport by drawing from the
entropic optimal transport, mirror descent and conjugate gradients literatures.
Our scalable and GPU parallelizable algorithm is able to compute the
Wasserstein distance with extreme precision, reaching relative error rates of
$10^{-8}$ without numerical stability issues. Empirically, the algorithm
converges to high precision solutions more quickly in terms of wall-clock time
than a variety of algorithms including log-domain stabilized Sinkhorn's
Algorithm. We provide careful ablations with respect to algorithm and problem
parameters, and present benchmarking over upsampled MNIST images, comparing to
various recent algorithms over high-dimensional problems. The results suggest
that our algorithm can be a useful addition to the practitioner's optimal
transport toolkit.
Related papers
- Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Linearized Wasserstein dimensionality reduction with approximation
guarantees [65.16758672591365]
LOT Wassmap is a computationally feasible algorithm to uncover low-dimensional structures in the Wasserstein space.
We show that LOT Wassmap attains correct embeddings and that the quality improves with increased sample size.
We also show how LOT Wassmap significantly reduces the computational cost when compared to algorithms that depend on pairwise distance computations.
arXiv Detail & Related papers (2023-02-14T22:12:16Z) - Optimizing CT Scan Geometries With and Without Gradients [7.788823739816626]
We show that gradient-based optimization algorithms are a possible alternative to gradient-free algorithms.
gradient-based algorithms converge substantially faster while being comparable to gradient-free algorithms in terms of capture range and robustness to the number of free parameters.
arXiv Detail & Related papers (2023-02-13T10:44:41Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Improved Rate of First Order Algorithms for Entropic Optimal Transport [2.1485350418225244]
This paper improves the state-of-the-art rate of a first-order algorithm for solving entropy regularized optimal transport.
We propose an accelerated primal-dual mirror descent algorithm with variance reduction.
Our algorithm may inspire more research to develop accelerated primal-dual algorithms that have rate $widetildeO(n2/epsilon)$ for solving OT.
arXiv Detail & Related papers (2023-01-23T19:13:25Z) - Efficient Optimal Transport Algorithm by Accelerated Gradient descent [20.614477547939845]
We propose a novel algorithm to further improve the efficiency and accuracy based on Nesterov's smoothing technique.
The proposed method achieves faster convergence and better accuracy with the same parameter.
arXiv Detail & Related papers (2021-04-12T20:23:29Z) - Optimal and Practical Algorithms for Smooth and Strongly Convex
Decentralized Optimization [21.555331273873175]
We consider the task of decentralized minimization of the sum of smooth strongly convex functions stored across the nodes of a network.
We propose two new algorithms for this decentralized optimization problem and equip them with complexity guarantees.
arXiv Detail & Related papers (2020-06-21T11:23:20Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
We study the problem of minimizing the population loss given i.i.d. samples from a distribution over convex loss functions.
A recent work of Bassily et al. has established the optimal bound on the excess population loss achievable given $n$ samples.
We describe two new techniques for deriving convex optimization algorithms both achieving the optimal bound on excess loss and using $O(minn, n2/d)$ gradient computations.
arXiv Detail & Related papers (2020-05-10T19:52:03Z) - A Study of Performance of Optimal Transport [16.847501106437534]
We show that network simplex and augmenting path based algorithms can consistently outperform numerical matrix-scaling based methods.
We present a new algorithm that improves upon the classical Kuhn-Munkres algorithm.
arXiv Detail & Related papers (2020-05-03T20:37:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.