Deep Learning with Passive Optical Nonlinear Mapping
- URL: http://arxiv.org/abs/2307.08558v2
- Date: Tue, 18 Jul 2023 15:23:48 GMT
- Title: Deep Learning with Passive Optical Nonlinear Mapping
- Authors: Fei Xia, Kyungduk Kim, Yaniv Eliezer, Liam Shaughnessy, Sylvain Gigan,
Hui Cao
- Abstract summary: We introduce a design that leverages multiple scattering in a reverberating cavity to passively induce optical nonlinear random mapping.
We show we can perform optical data compression, facilitated by multiple scattering in the cavity, to efficiently compress and retain vital information.
Our findings pave the way for novel algorithms and architectural designs for optical computing.
- Score: 9.177212626554505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has fundamentally transformed artificial intelligence, but the
ever-increasing complexity in deep learning models calls for specialized
hardware accelerators. Optical accelerators can potentially offer enhanced
performance, scalability, and energy efficiency. However, achieving nonlinear
mapping, a critical component of neural networks, remains challenging
optically. Here, we introduce a design that leverages multiple scattering in a
reverberating cavity to passively induce optical nonlinear random mapping,
without the need for additional laser power. A key advantage emerging from our
work is that we show we can perform optical data compression, facilitated by
multiple scattering in the cavity, to efficiently compress and retain vital
information while also decreasing data dimensionality. This allows rapid
optical information processing and generation of low dimensional mixtures of
highly nonlinear features. These are particularly useful for applications
demanding high-speed analysis and responses such as in edge computing devices.
Utilizing rapid optical information processing capabilities, our optical
platforms could potentially offer more efficient and real-time processing
solutions for a broad range of applications. We demonstrate the efficacy of our
design in improving computational performance across tasks, including
classification, image reconstruction, key-point detection, and object
detection, all achieved through optical data compression combined with a
digital decoder. Notably, we observed high performance, at an extreme
compression ratio, for real-time pedestrian detection. Our findings pave the
way for novel algorithms and architectural designs for optical computing.
Related papers
- Optical training of large-scale Transformers and deep neural networks with direct feedback alignment [48.90869997343841]
We experimentally implement a versatile and scalable training algorithm, called direct feedback alignment, on a hybrid electronic-photonic platform.
An optical processing unit performs large-scale random matrix multiplications, which is the central operation of this algorithm, at speeds up to 1500 TeraOps.
We study the compute scaling of our hybrid optical approach, and demonstrate a potential advantage for ultra-deep and wide neural networks.
arXiv Detail & Related papers (2024-09-01T12:48:47Z) - Genetically programmable optical random neural networks [0.0]
We demonstrate a genetically programmable yet simple optical neural network to achieve high performances with optical random projection.
By genetically programming the orientation of the scattering medium which acts as a random projection kernel, our novel technique finds an optimum kernel and improves its initial test accuracies 7-22%.
Our optical computing method presents a promising approach to achieve high performance in optical neural networks with a simple and scalable design.
arXiv Detail & Related papers (2024-03-19T06:55:59Z) - Optical Extreme Learning Machines with Atomic Vapors [0.3069335774032178]
Extreme learning machines explore nonlinear random projections to perform computing tasks on high-dimensional output spaces.
This manuscript explores the possibility of using atomic gases in near-resonant conditions to implement an optical extreme learning machine.
Our results suggest that these systems have the potential not only to work as an optical extreme learning machine but also to perform these computations at the few-photon level.
arXiv Detail & Related papers (2024-01-08T10:19:28Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
We propose a novel hardware-software co-design, random resistive memory-based deep extreme point learning machine (DEPLM)
Our co-design system achieves huge energy efficiency improvements and training cost reduction when compared to conventional systems.
arXiv Detail & Related papers (2023-12-14T09:46:16Z) - Neuromorphic Optical Flow and Real-time Implementation with Event
Cameras [47.11134388304464]
We build on the latest developments in event-based vision and spiking neural networks.
We propose a new network architecture that improves the state-of-the-art self-supervised optical flow accuracy.
We demonstrate high speed optical flow prediction with almost two orders of magnitude reduced complexity.
arXiv Detail & Related papers (2023-04-14T14:03:35Z) - Multi-mode fiber reservoir computing overcomes shallow neural networks
classifiers [8.891157811906407]
We recast multi-mode optical fibers into random hardware projectors, transforming an input dataset into a speckled image set.
We find that the hardware operates in a flatter region of the loss landscape when trained on fiber data, which aligns with the current theory of deep neural networks.
arXiv Detail & Related papers (2022-10-10T14:55:02Z) - All-Photonic Artificial Neural Network Processor Via Non-linear Optics [0.0]
We propose an all-photonic artificial neural network processor.
Information is encoded in the amplitudes of frequency modes that act as neurons.
Our architecture is unique in providing a completely unitary, reversible mode of computation.
arXiv Detail & Related papers (2022-05-17T19:55:30Z) - All-optical graph representation learning using integrated diffractive
photonic computing units [51.15389025760809]
Photonic neural networks perform brain-inspired computations using photons instead of electrons.
We propose an all-optical graph representation learning architecture, termed diffractive graph neural network (DGNN)
We demonstrate the use of DGNN extracted features for node and graph-level classification tasks with benchmark databases and achieve superior performance.
arXiv Detail & Related papers (2022-04-23T02:29:48Z) - Universal and Flexible Optical Aberration Correction Using Deep-Prior
Based Deconvolution [51.274657266928315]
We propose a PSF aware plug-and-play deep network, which takes the aberrant image and PSF map as input and produces the latent high quality version via incorporating lens-specific deep priors.
Specifically, we pre-train a base model from a set of diverse lenses and then adapt it to a given lens by quickly refining the parameters.
arXiv Detail & Related papers (2021-04-07T12:00:38Z) - Scalable Optical Learning Operator [0.2399911126932526]
The presented framework overcomes the energy scaling problem of existing systems without classifying speed.
We numerically and experimentally showed the ability of the method to execute several different tasks with accuracy comparable to a digital implementation.
Our results indicate that a powerful supercomputer would be required to duplicate the performance of the multimode fiber-based computer.
arXiv Detail & Related papers (2020-12-22T23:06:59Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.