Generalizable Non-Line-of-Sight Imaging with Learnable Physical Priors
- URL: http://arxiv.org/abs/2409.14011v1
- Date: Sat, 21 Sep 2024 04:39:45 GMT
- Title: Generalizable Non-Line-of-Sight Imaging with Learnable Physical Priors
- Authors: Shida Sun, Yue Li, Yueyi Zhang, Zhiwei Xiong,
- Abstract summary: Non-line-of-sight (NLOS) imaging has attracted increasing attention due to its potential applications.
Existing NLOS reconstruction approaches are constrained by the reliance on empirical physical priors.
We introduce a novel learning-based solution, comprising two key designs: Learnable Path Compensation (LPC) and Adaptive Phasor Field (APF)
- Score: 52.195637608631955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-line-of-sight (NLOS) imaging, recovering the hidden volume from indirect reflections, has attracted increasing attention due to its potential applications. Despite promising results, existing NLOS reconstruction approaches are constrained by the reliance on empirical physical priors, e.g., single fixed path compensation. Moreover, these approaches still possess limited generalization ability, particularly when dealing with scenes at a low signal-to-noise ratio (SNR). To overcome the above problems, we introduce a novel learning-based solution, comprising two key designs: Learnable Path Compensation (LPC) and Adaptive Phasor Field (APF). The LPC applies tailored path compensation coefficients to adapt to different objects in the scene, effectively reducing light wave attenuation, especially in distant regions. Meanwhile, the APF learns the precise Gaussian window of the illumination function for the phasor field, dynamically selecting the relevant spectrum band of the transient measurement. Experimental validations demonstrate that our proposed approach, only trained on synthetic data, exhibits the capability to seamlessly generalize across various real-world datasets captured by different imaging systems and characterized by low SNRs.
Related papers
- Unsupervised Low-light Image Enhancement with Lookup Tables and Diffusion Priors [38.96909959677438]
Low-light image enhancement (LIE) aims at precisely and efficiently recovering an image degraded in poor illumination environments.
Recent advanced LIE techniques are using deep neural networks, which require lots of low-normal light image pairs, network parameters, and computational resources.
We devise a novel unsupervised LIE framework based on diffusion priors and lookup tables to achieve efficient low-light image recovery.
arXiv Detail & Related papers (2024-09-27T16:37:27Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
Large Vision-Language Models (LVLMs) have become indispensable tools in computer vision and natural language processing.
Our investigation reveals a noteworthy bias in the generated content, where the output is primarily influenced by the underlying Large Language Models (LLMs) prior to the input image.
To rectify these biases and redirect the model's focus toward vision information, we introduce two simple, training-free strategies.
arXiv Detail & Related papers (2024-03-08T12:35:07Z) - Diffusion-based Light Field Synthesis [50.24624071354433]
LFdiff is a diffusion-based generative framework tailored for LF synthesis.
We propose DistgUnet, a disentanglement-based noise estimation network, to harness comprehensive LF representations.
Extensive experiments demonstrate that LFdiff excels in synthesizing visually pleasing and disparity-controllable light fields.
arXiv Detail & Related papers (2024-02-01T13:13:16Z) - LFSRDiff: Light Field Image Super-Resolution via Diffusion Models [18.20217829625834]
Light field (LF) image super-resolution (SR) is a challenging problem due to its inherent ill-posed nature.
mainstream LF image SR methods typically adopt a deterministic approach, generating only a single output supervised by pixel-wise loss functions.
We introduce LFSRDiff, the first diffusion-based LF image SR model, by incorporating the LF disentanglement mechanism.
arXiv Detail & Related papers (2023-11-27T07:31:12Z) - Self-Calibrating, Fully Differentiable NLOS Inverse Rendering [15.624750787186803]
Time-resolved non-line-of-sight (NLOS) imaging methods reconstruct hidden scenes by inverting the optical paths of indirect illumination measured at visible relay surfaces.
We introduce a fully-differentiable end-to-end NLOS inverse rendering pipeline that self-calibrates the imaging parameters during the reconstruction of hidden scenes.
We demonstrate the robustness of our method to consistently reconstruct geometry and albedo, even under significant noise levels.
arXiv Detail & Related papers (2023-09-21T13:15:54Z) - Improving Lens Flare Removal with General Purpose Pipeline and Multiple
Light Sources Recovery [69.71080926778413]
flare artifacts can affect image visual quality and downstream computer vision tasks.
Current methods do not consider automatic exposure and tone mapping in image signal processing pipeline.
We propose a solution to improve the performance of lens flare removal by revisiting the ISP and design a more reliable light sources recovery strategy.
arXiv Detail & Related papers (2023-08-31T04:58:17Z) - Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network [52.77569396659629]
This paper presents the deep compensation network unfolding (DCUNet) for restoring light field (LF) images captured under low-light conditions.
The framework uses the intermediate enhanced result to estimate the illumination map, which is then employed in the unfolding process to produce a new enhanced result.
To properly leverage the unique characteristics of LF images, this paper proposes a pseudo-explicit feature interaction module.
arXiv Detail & Related papers (2023-08-10T07:53:06Z) - ATASI-Net: An Efficient Sparse Reconstruction Network for Tomographic
SAR Imaging with Adaptive Threshold [13.379416816598873]
This paper proposes a novel efficient sparse unfolding network based on the analytic learned iterative shrinkage thresholding algorithm (ALISTA)
The weight matrix in each layer of ATASI-Net is pre-computed as the solution of an off-line optimization problem.
In addition, adaptive threshold is introduced for each azimuth-range pixel, enabling the threshold shrinkage to be not only layer-varied but also element-wise.
arXiv Detail & Related papers (2022-11-30T09:55:45Z) - Light Field Spatial Super-resolution via Deep Combinatorial Geometry
Embedding and Structural Consistency Regularization [99.96632216070718]
Light field (LF) images acquired by hand-held devices usually suffer from low spatial resolution.
The high-dimensional spatiality characteristic and complex geometrical structure of LF images make the problem more challenging than traditional single-image SR.
We propose a novel learning-based LF framework, in which each view of an LF image is first individually super-resolved.
arXiv Detail & Related papers (2020-04-05T14:39:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.