Nonlinear optical encoding enabled by recurrent linear scattering
- URL: http://arxiv.org/abs/2307.08558v3
- Date: Wed, 11 Dec 2024 14:53:27 GMT
- Title: Nonlinear optical encoding enabled by recurrent linear scattering
- Authors: Fei Xia, Kyungduk Kim, Yaniv Eliezer, SeungYun Han, Liam Shaughnessy, Sylvain Gigan, Hui Cao,
- Abstract summary: We introduce a design that passively induce optical nonlinear random mapping with a continuous-wave laser at a low power.<n>We demonstrate that our design retains vital information even when the readout dimensionality is reduced.<n>This capability allows our optical platforms to offer efficient optical information processing solutions across applications.
- Score: 16.952531256252744
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optical information processing and computing can potentially offer enhanced performance, scalability and energy efficiency. However, achieving nonlinearity-a critical component of computation-remains challenging in the optical domain. Here we introduce a design that leverages a multiple-scattering cavity to passively induce optical nonlinear random mapping with a continuous-wave laser at a low power. Each scattering event effectively mixes information from different areas of a spatial light modulator, resulting in a highly nonlinear mapping between the input data and output pattern. We demonstrate that our design retains vital information even when the readout dimensionality is reduced, thereby enabling optical data compression. This capability allows our optical platforms to offer efficient optical information processing solutions across applications. We demonstrate our design's efficacy across tasks, including classification, image reconstruction, keypoint detection and object detection, all of which are achieved through optical data compression combined with a digital decoder. In particular, high performance at extreme compression ratios is observed in real-time pedestrian detection. Our findings open pathways for novel algorithms and unconventional architectural designs for optical computing.
Related papers
- Successive optimization of optics and post-processing with differentiable coherent PSF operator and field information [9.527960631238173]
We introduce a precise optical simulation model, and every operation in pipeline is differentiable.
To efficiently address various degradation, we design a joint optimization procedure that leverages field information.
arXiv Detail & Related papers (2024-12-19T07:49:40Z) - Generalizable Non-Line-of-Sight Imaging with Learnable Physical Priors [52.195637608631955]
Non-line-of-sight (NLOS) imaging has attracted increasing attention due to its potential applications.
Existing NLOS reconstruction approaches are constrained by the reliance on empirical physical priors.
We introduce a novel learning-based solution, comprising two key designs: Learnable Path Compensation (LPC) and Adaptive Phasor Field (APF)
arXiv Detail & Related papers (2024-09-21T04:39:45Z) - Optical training of large-scale Transformers and deep neural networks with direct feedback alignment [48.90869997343841]
We experimentally implement a versatile and scalable training algorithm, called direct feedback alignment, on a hybrid electronic-photonic platform.
An optical processing unit performs large-scale random matrix multiplications, which is the central operation of this algorithm, at speeds up to 1500 TeraOps.
We study the compute scaling of our hybrid optical approach, and demonstrate a potential advantage for ultra-deep and wide neural networks.
arXiv Detail & Related papers (2024-09-01T12:48:47Z) - Genetically programmable optical random neural networks [0.0]
We demonstrate a genetically programmable yet simple optical neural network to achieve high performances with optical random projection.
By genetically programming the orientation of the scattering medium which acts as a random projection kernel, our novel technique finds an optimum kernel and improves its initial test accuracies 7-22%.
Our optical computing method presents a promising approach to achieve high performance in optical neural networks with a simple and scalable design.
arXiv Detail & Related papers (2024-03-19T06:55:59Z) - Optical Extreme Learning Machines with Atomic Vapors [0.3069335774032178]
Extreme learning machines explore nonlinear random projections to perform computing tasks on high-dimensional output spaces.
This manuscript explores the possibility of using atomic gases in near-resonant conditions to implement an optical extreme learning machine.
Our results suggest that these systems have the potential not only to work as an optical extreme learning machine but also to perform these computations at the few-photon level.
arXiv Detail & Related papers (2024-01-08T10:19:28Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
We propose a novel hardware-software co-design, random resistive memory-based deep extreme point learning machine (DEPLM)
Our co-design system achieves huge energy efficiency improvements and training cost reduction when compared to conventional systems.
arXiv Detail & Related papers (2023-12-14T09:46:16Z) - Complex-valued universal linear transformations and image encryption
using spatially incoherent diffractive networks [0.0]
As an optical processor, a Diffractive Deep Neural Network (D2NN) utilizes engineered diffractive surfaces designed through machine learning to perform all-optical information processing.
We show that a spatially incoherent diffractive visual processor can approximate any complex-valued linear transformation and be used for all-optical image encryption using incoherent illumination.
arXiv Detail & Related papers (2023-10-05T08:43:59Z) - Nonlinear Processing with Linear Optics [3.3998740964877467]
We present a novel framework that uses multiple scattering that is capable of synthesizing programmable linear and nonlinear transformations concurrently at low optical power.
We empirically found that scaling of this optical framework follows the power law as in state-of-the-art deep digital networks.
arXiv Detail & Related papers (2023-07-17T14:49:06Z) - Neuromorphic Optical Flow and Real-time Implementation with Event
Cameras [47.11134388304464]
We build on the latest developments in event-based vision and spiking neural networks.
We propose a new network architecture that improves the state-of-the-art self-supervised optical flow accuracy.
We demonstrate high speed optical flow prediction with almost two orders of magnitude reduced complexity.
arXiv Detail & Related papers (2023-04-14T14:03:35Z) - Characterization of multi-mode linear optical networks [0.0]
We formulate efficient procedures for the characterization of optical circuits in the presence of imperfections.
We show the viability of this approach in an experimentally relevant scenario, defined by a tunable integrated photonic circuit.
Our findings can find application in a wide range of optical setups, based both on bulk and integrated configurations.
arXiv Detail & Related papers (2023-04-13T13:09:14Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Multi-mode fiber reservoir computing overcomes shallow neural networks
classifiers [8.891157811906407]
We recast multi-mode optical fibers into random hardware projectors, transforming an input dataset into a speckled image set.
We find that the hardware operates in a flatter region of the loss landscape when trained on fiber data, which aligns with the current theory of deep neural networks.
arXiv Detail & Related papers (2022-10-10T14:55:02Z) - All-Photonic Artificial Neural Network Processor Via Non-linear Optics [0.0]
We propose an all-photonic artificial neural network processor.
Information is encoded in the amplitudes of frequency modes that act as neurons.
Our architecture is unique in providing a completely unitary, reversible mode of computation.
arXiv Detail & Related papers (2022-05-17T19:55:30Z) - All-optical graph representation learning using integrated diffractive
photonic computing units [51.15389025760809]
Photonic neural networks perform brain-inspired computations using photons instead of electrons.
We propose an all-optical graph representation learning architecture, termed diffractive graph neural network (DGNN)
We demonstrate the use of DGNN extracted features for node and graph-level classification tasks with benchmark databases and achieve superior performance.
arXiv Detail & Related papers (2022-04-23T02:29:48Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Learning optical flow from still images [53.295332513139925]
We introduce a framework to generate accurate ground-truth optical flow annotations quickly and in large amounts from any readily available single real picture.
We virtually move the camera in the reconstructed environment with known motion vectors and rotation angles.
When trained with our data, state-of-the-art optical flow networks achieve superior generalization to unseen real data.
arXiv Detail & Related papers (2021-04-08T17:59:58Z) - Universal and Flexible Optical Aberration Correction Using Deep-Prior
Based Deconvolution [51.274657266928315]
We propose a PSF aware plug-and-play deep network, which takes the aberrant image and PSF map as input and produces the latent high quality version via incorporating lens-specific deep priors.
Specifically, we pre-train a base model from a set of diverse lenses and then adapt it to a given lens by quickly refining the parameters.
arXiv Detail & Related papers (2021-04-07T12:00:38Z) - Scalable Optical Learning Operator [0.2399911126932526]
The presented framework overcomes the energy scaling problem of existing systems without classifying speed.
We numerically and experimentally showed the ability of the method to execute several different tasks with accuracy comparable to a digital implementation.
Our results indicate that a powerful supercomputer would be required to duplicate the performance of the multimode fiber-based computer.
arXiv Detail & Related papers (2020-12-22T23:06:59Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.