Learning to Count without Annotations
- URL: http://arxiv.org/abs/2307.08727v2
- Date: Fri, 29 Mar 2024 17:38:00 GMT
- Title: Learning to Count without Annotations
- Authors: Lukas Knobel, Tengda Han, Yuki M. Asano,
- Abstract summary: We propose UnCounTR, a model that can learn this task without requiring any manual annotations.
We construct "Self-Collages", images with various pasted objects as training samples, that provide a rich learning signal covering arbitrary object types and counts.
Our method builds on existing unsupervised representations and segmentation techniques to successfully demonstrate for the first time the ability of reference-based counting without manual supervision.
- Score: 23.506936202158013
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While recent supervised methods for reference-based object counting continue to improve the performance on benchmark datasets, they have to rely on small datasets due to the cost associated with manually annotating dozens of objects in images. We propose UnCounTR, a model that can learn this task without requiring any manual annotations. To this end, we construct "Self-Collages", images with various pasted objects as training samples, that provide a rich learning signal covering arbitrary object types and counts. Our method builds on existing unsupervised representations and segmentation techniques to successfully demonstrate for the first time the ability of reference-based counting without manual supervision. Our experiments show that our method not only outperforms simple baselines and generic models such as FasterRCNN and DETR, but also matches the performance of supervised counting models in some domains.
Related papers
- Zero-Shot Object-Centric Representation Learning [72.43369950684057]
We study current object-centric methods through the lens of zero-shot generalization.
We introduce a benchmark comprising eight different synthetic and real-world datasets.
We find that training on diverse real-world images improves transferability to unseen scenarios.
arXiv Detail & Related papers (2024-08-17T10:37:07Z) - A Simple-but-effective Baseline for Training-free Class-Agnostic
Counting [30.792198686654075]
Class-Agnostic Counting (CAC) seeks to accurately count objects in a given image with only a few reference examples.
Recent efforts have shown that it's possible to accomplish this without training by utilizing pre-existing foundation models.
We present a training-free solution that effectively bridges this performance gap, serving as a strong baseline.
arXiv Detail & Related papers (2024-03-03T07:19:50Z) - Semi-supervised learning made simple with self-supervised clustering [65.98152950607707]
Self-supervised learning models have been shown to learn rich visual representations without requiring human annotations.
We propose a conceptually simple yet empirically powerful approach to turn clustering-based self-supervised methods into semi-supervised learners.
arXiv Detail & Related papers (2023-06-13T01:09:18Z) - Learning to Count Anything: Reference-less Class-agnostic Counting with
Weak Supervision [11.037585450795357]
We show that counting is, at its core, a repetition-recognition task.
We demonstrate that self-supervised vision transformer features combined with a lightweight count regression head achieve competitive results.
arXiv Detail & Related papers (2022-05-20T14:26:38Z) - CLASTER: Clustering with Reinforcement Learning for Zero-Shot Action
Recognition [52.66360172784038]
We propose a clustering-based model, which considers all training samples at once, instead of optimizing for each instance individually.
We call the proposed method CLASTER and observe that it consistently improves over the state-of-the-art in all standard datasets.
arXiv Detail & Related papers (2021-01-18T12:46:24Z) - A Few-Shot Sequential Approach for Object Counting [63.82757025821265]
We introduce a class attention mechanism that sequentially attends to objects in the image and extracts their relevant features.
The proposed technique is trained on point-level annotations and uses a novel loss function that disentangles class-dependent and class-agnostic aspects of the model.
We present our results on a variety of object-counting/detection datasets, including FSOD and MS COCO.
arXiv Detail & Related papers (2020-07-03T18:23:39Z) - Self-Supervised Prototypical Transfer Learning for Few-Shot
Classification [11.96734018295146]
Self-supervised transfer learning approach ProtoTransfer outperforms state-of-the-art unsupervised meta-learning methods on few-shot tasks.
In few-shot experiments with domain shift, our approach even has comparable performance to supervised methods, but requires orders of magnitude fewer labels.
arXiv Detail & Related papers (2020-06-19T19:00:11Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
Methods for object detection and segmentation rely on large scale instance-level annotations for training.
We propose an intuitive and unified semi-supervised model that is applicable to a range of supervision.
arXiv Detail & Related papers (2020-06-12T22:45:47Z) - Towards Using Count-level Weak Supervision for Crowd Counting [55.58468947486247]
This paper studies the problem of weakly-supervised crowd counting which learns a model from only a small amount of location-level annotations (fully-supervised) but a large amount of count-level annotations (weakly-supervised)
We devise a simple-yet-effective training strategy, namely Multiple Auxiliary Tasks Training (MATT), to construct regularizes for restricting the freedom of the generated density maps.
arXiv Detail & Related papers (2020-02-29T02:58:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.