論文の概要: Natural Actor-Critic for Robust Reinforcement Learning with Function
Approximation
- arxiv url: http://arxiv.org/abs/2307.08875v2
- Date: Sun, 10 Dec 2023 18:42:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-13 02:11:03.496268
- Title: Natural Actor-Critic for Robust Reinforcement Learning with Function
Approximation
- Title(参考訳): 関数近似を用いたロバスト強化学習のための自然アクター批判
- Authors: Ruida Zhou, Tao Liu, Min Cheng, Dileep Kalathil, P. R. Kumar, Chao
Tian
- Abstract要約: 本研究では,トレーニングシミュレータとテスト環境間のモデルミスマッチに対して頑健な評価政策を決定することを目的として,ロバスト強化学習(RL)について検討する。
本稿では2つの新しい不確実性集合の定式化を提案し,その1つは二重サンプリングに基づくものであり,もう1つは積分確率計量に基づくものである。
複数の MuJoCo 環境と実世界の TurtleBot ナビゲーションタスクにおいて,提案した RNAC アプローチによって学習されたポリシーの堅牢性を示す。
- 参考スコア(独自算出の注目度): 20.43657369407846
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We study robust reinforcement learning (RL) with the goal of determining a
well-performing policy that is robust against model mismatch between the
training simulator and the testing environment. Previous policy-based robust RL
algorithms mainly focus on the tabular setting under uncertainty sets that
facilitate robust policy evaluation, but are no longer tractable when the
number of states scales up. To this end, we propose two novel uncertainty set
formulations, one based on double sampling and the other on an integral
probability metric. Both make large-scale robust RL tractable even when one
only has access to a simulator. We propose a robust natural actor-critic (RNAC)
approach that incorporates the new uncertainty sets and employs function
approximation. We provide finite-time convergence guarantees for the proposed
RNAC algorithm to the optimal robust policy within the function approximation
error. Finally, we demonstrate the robust performance of the policy learned by
our proposed RNAC approach in multiple MuJoCo environments and a real-world
TurtleBot navigation task.
- Abstract(参考訳): 本研究では,トレーニングシミュレータとテスト環境間のモデルミスマッチに対して頑健な評価政策を決定することを目的として,ロバスト強化学習(RL)について検討する。
従来のポリシーベースのロバストなRLアルゴリズムは主に、ロバストなポリシー評価を容易にする不確実性セットの下での表の設定に重点を置いているが、状態のスケールアップ時にはもはや取り外せない。
この目的のために,2つの新しい不確実性集合の定式化を提案し,その1つは二重サンプリングに基づくものであり,もう1つは積分確率計量に基づくものである。
どちらも、シミュレータにしかアクセスできない場合でも、大規模で堅牢なRLを牽引可能である。
本稿では,新しい不確実性集合を取り入れ,関数近似を用いる,頑健な自然なアクター批判(RNAC)アプローチを提案する。
提案するrnacアルゴリズムの関数近似誤差における最適ロバストポリシーに対する有限時間収束保証を提案する。
最後に,複数の MuJoCo 環境と実際の TurtleBot ナビゲーションタスクにおいて,提案した RNAC アプローチによって学習されたポリシーの堅牢性を示す。
関連論文リスト
- Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
政策勾配法(PG法)は連続強化学習(RL法)問題に対処する手法として成功している。
一般的には、収束(ハイパー)政治は、決定論的バージョンをデプロイするためにのみ学習される。
本稿では,サンプルの複雑性とデプロイされた決定論的ポリシのパフォーマンスのトレードオフを最適化するために,学習に使用する探索レベルの調整方法を示す。
論文 参考訳(メタデータ) (2024-05-03T16:45:15Z) - Probabilistic Reach-Avoid for Bayesian Neural Networks [71.67052234622781]
最適合成アルゴリズムは、証明された状態の数を4倍以上に増やすことができることを示す。
このアルゴリズムは、平均的な到達回避確率を3倍以上に向上させることができる。
論文 参考訳(メタデータ) (2023-10-03T10:52:21Z) - Efficient Action Robust Reinforcement Learning with Probabilistic Policy
Execution Uncertainty [43.55450683502937]
本稿では,確率的政策実行の不確実性を考慮したアクションロバストなRLに着目した。
我々は,確率的政策実行の不確実性を伴う行動堅牢なMDPに対する最適政策の存在を確立する。
我々はまた、最適な後悔とサンプルの複雑さを最小限に抑えるAction Robust Reinforcement Learning with Certificates (ARRLC)アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-07-15T00:26:51Z) - Constrained Reinforcement Learning via Dissipative Saddle Flow Dynamics [5.270497591225775]
制約強化学習(C-RL)において、エージェントは期待される累積報酬を最大化するポリシーを環境から学ぼうとする。
サンプルベース原始双対法に根ざしたいくつかのアルゴリズムが、政策空間においてこの問題を解決するために最近提案されている。
本稿では,制約付きRLに対して,これらの制約に悩まされない新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-03T01:54:55Z) - Model-based Safe Deep Reinforcement Learning via a Constrained Proximal
Policy Optimization Algorithm [4.128216503196621]
オンライン方式で環境の遷移動態を学習する,オンライン型モデルに基づくセーフディープRLアルゴリズムを提案する。
我々は,本アルゴリズムがより標本効率が高く,制約付きモデルフリーアプローチと比較して累積的ハザード違反が低いことを示す。
論文 参考訳(メタデータ) (2022-10-14T06:53:02Z) - Provably Correct Optimization and Exploration with Non-linear Policies [65.60853260886516]
ENIACは、批評家の非線形関数近似を可能にするアクター批判手法である。
特定の仮定の下では、学習者は$o(poly(d))$の探索ラウンドで最適に近い方針を見つける。
我々は,この適応を経験的に評価し,線形手法に触発された前処理よりも優れることを示す。
論文 参考訳(メタデータ) (2021-03-22T03:16:33Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
本研究は,リスクに敏感な深層強化学習を,分散リスク基準による平均報酬条件下で研究する試みである。
本稿では,ポリシー,ラグランジュ乗算器,フェンシェル双対変数を反復的かつ効率的に更新するアクタ批判アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-28T05:02:26Z) - Robust Reinforcement Learning using Least Squares Policy Iteration with
Provable Performance Guarantees [3.8073142980733]
本稿では,ロバストマルコフ決定過程(RMDP)におけるモデルレス強化学習の課題について述べる。
本稿では、まず、ポリシー評価のための多段階オンラインモデルフリー学習アルゴリズムであるRobust Least Squares Policy Evaluationアルゴリズムを提案する。
次に,ロバスト・ラスト・スクエアズ・ポリシー・イテレーション (RLSPI) アルゴリズムを提案し,ロバスト・ラスト・スクエアズ・ポリシーを最適に学習する。
論文 参考訳(メタデータ) (2020-06-20T16:26:50Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
我々は,制約付きポリシー最適化(CPPO)の実装に基づくRLフレームワークであるGCPOを紹介する。
誘導制約付きRLは所望の最適値に近い高速収束を実現し,正確な報酬関数チューニングを必要とせず,最適かつ物理的に実現可能なロボット制御動作を実現することを示す。
論文 参考訳(メタデータ) (2020-02-22T10:15:53Z) - Robust Reinforcement Learning via Adversarial training with Langevin
Dynamics [51.234482917047835]
本稿では,頑健な強化学習(RL)エージェントを訓練する難しい課題に取り組むために,サンプリング視点を導入する。
本稿では,2人プレイヤポリシー手法のサンプリング版である,スケーラブルな2人プレイヤRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-14T14:59:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。