EgoVM: Achieving Precise Ego-Localization using Lightweight Vectorized
Maps
- URL: http://arxiv.org/abs/2307.08991v1
- Date: Tue, 18 Jul 2023 06:07:25 GMT
- Title: EgoVM: Achieving Precise Ego-Localization using Lightweight Vectorized
Maps
- Authors: Yuzhe He, Shuang Liang, Xiaofei Rui, Chengying Cai, Guowei Wan
- Abstract summary: We present EgoVM, an end-to-end localization network that achieves comparable localization accuracy to prior state-of-the-art methods.
We employ a set of learnable semantic embeddings to encode the semantic types of map elements and supervise them with semantic segmentation.
We adopt a robust histogram-based pose solver to estimate the optimal pose by searching exhaustively over candidate poses.
- Score: 9.450650025266379
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and reliable ego-localization is critical for autonomous driving. In
this paper, we present EgoVM, an end-to-end localization network that achieves
comparable localization accuracy to prior state-of-the-art methods, but uses
lightweight vectorized maps instead of heavy point-based maps. To begin with,
we extract BEV features from online multi-view images and LiDAR point cloud.
Then, we employ a set of learnable semantic embeddings to encode the semantic
types of map elements and supervise them with semantic segmentation, to make
their feature representation consistent with BEV features. After that, we feed
map queries, composed of learnable semantic embeddings and coordinates of map
elements, into a transformer decoder to perform cross-modality matching with
BEV features. Finally, we adopt a robust histogram-based pose solver to
estimate the optimal pose by searching exhaustively over candidate poses. We
comprehensively validate the effectiveness of our method using both the
nuScenes dataset and a newly collected dataset. The experimental results show
that our method achieves centimeter-level localization accuracy, and
outperforms existing methods using vectorized maps by a large margin.
Furthermore, our model has been extensively tested in a large fleet of
autonomous vehicles under various challenging urban scenes.
Related papers
- VQ-Map: Bird's-Eye-View Map Layout Estimation in Tokenized Discrete Space via Vector Quantization [108.68014173017583]
Bird's-eye-view (BEV) map layout estimation requires an accurate and full understanding of the semantics for the environmental elements around the ego car.
We propose to utilize a generative model similar to the Vector Quantized-Variational AutoEncoder (VQ-VAE) to acquire prior knowledge for the high-level BEV semantics in the tokenized discrete space.
Thanks to the obtained BEV tokens accompanied with a codebook embedding encapsulating the semantics for different BEV elements in the groundtruth maps, we are able to directly align the sparse backbone image features with the obtained BEV tokens
arXiv Detail & Related papers (2024-11-03T16:09:47Z) - Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
We present a mapping system that fuses local submaps gathered from a fleet of vehicles at a central instance to produce a coherent map of the road environment.
Our method jointly aligns and merges the noisy and incomplete local submaps using a scene-specific Neural Signed Distance Field.
We leverage memory-efficient sparse feature-grids to scale to large areas and introduce a confidence score to model uncertainty in scene reconstruction.
arXiv Detail & Related papers (2024-10-10T10:10:03Z) - Monocular Localization with Semantics Map for Autonomous Vehicles [8.242967098897408]
We propose a novel visual semantic localization algorithm that employs stable semantic features instead of low-level texture features.
First, semantic maps are constructed offline by detecting semantic objects, such as ground markers, lane lines, and poles, using cameras or LiDAR sensors.
Online visual localization is performed through data association of semantic features and map objects.
arXiv Detail & Related papers (2024-06-06T08:12:38Z) - SemVecNet: Generalizable Vector Map Generation for Arbitrary Sensor Configurations [3.8472678261304587]
We propose a modular pipeline for vector map generation with improved generalization to sensor configurations.
By adopting a BEV semantic map robust to different sensor configurations, our proposed approach significantly improves the generalization performance.
arXiv Detail & Related papers (2024-04-30T23:45:16Z) - Online Map Vectorization for Autonomous Driving: A Rasterization
Perspective [58.71769343511168]
We introduce a newization-based evaluation metric, which has superior sensitivity and is better suited to real-world autonomous driving scenarios.
We also propose MapVR (Map Vectorization via Rasterization), a novel framework that applies differentiableization to preciseized outputs and then performs geometry-aware supervision on HD maps.
arXiv Detail & Related papers (2023-06-18T08:51:14Z) - Asynchronously Trained Distributed Topographic Maps [0.0]
We present an algorithm that uses $N$ autonomous units to generate a feature map by distributed training.
Unit autonomy is achieved by sparse interaction in time & space through the combination of a distributed search, and a cascade-driven weight updating scheme.
arXiv Detail & Related papers (2023-01-20T01:15:56Z) - BEV-Locator: An End-to-end Visual Semantic Localization Network Using
Multi-View Images [13.258689143949912]
We propose an end-to-end visual semantic localization neural network using multi-view camera images.
The BEV-Locator is capable to estimate the vehicle poses under versatile scenarios.
Experiments report satisfactory accuracy with mean absolute errors of 0.052m, 0.135m and 0.251$circ$ in lateral, longitudinal translation and heading angle degree.
arXiv Detail & Related papers (2022-11-27T20:24:56Z) - Learning Implicit Feature Alignment Function for Semantic Segmentation [51.36809814890326]
Implicit Feature Alignment function (IFA) is inspired by the rapidly expanding topic of implicit neural representations.
We show that IFA implicitly aligns the feature maps at different levels and is capable of producing segmentation maps in arbitrary resolutions.
Our method can be combined with improvement on various architectures, and it achieves state-of-the-art accuracy trade-off on common benchmarks.
arXiv Detail & Related papers (2022-06-17T09:40:14Z) - Semantic Image Alignment for Vehicle Localization [111.59616433224662]
We present a novel approach to vehicle localization in dense semantic maps using semantic segmentation from a monocular camera.
In contrast to existing visual localization approaches, the system does not require additional keypoint features, handcrafted localization landmark extractors or expensive LiDAR sensors.
arXiv Detail & Related papers (2021-10-08T14:40:15Z) - Coarse-to-fine Semantic Localization with HD Map for Autonomous Driving
in Structural Scenes [1.1024591739346292]
We propose a cost-effective vehicle localization system with HD map for autonomous driving using cameras as primary sensors.
We formulate vision-based localization as a data association problem that maps visual semantics to landmarks in HD map.
We evaluate our method on two datasets and demonstrate that the proposed approach yields promising localization results in different driving scenarios.
arXiv Detail & Related papers (2021-07-06T11:58:55Z) - Rethinking Localization Map: Towards Accurate Object Perception with
Self-Enhancement Maps [78.2581910688094]
This work introduces a novel self-enhancement method to harvest accurate object localization maps and object boundaries with only category labels as supervision.
In particular, the proposed Self-Enhancement Maps achieve the state-of-the-art localization accuracy of 54.88% on ILSVRC.
arXiv Detail & Related papers (2020-06-09T12:35:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.