Asynchronously Trained Distributed Topographic Maps
- URL: http://arxiv.org/abs/2301.08379v1
- Date: Fri, 20 Jan 2023 01:15:56 GMT
- Title: Asynchronously Trained Distributed Topographic Maps
- Authors: Abbas Siddiqui and Dionysios Georgiadis
- Abstract summary: We present an algorithm that uses $N$ autonomous units to generate a feature map by distributed training.
Unit autonomy is achieved by sparse interaction in time & space through the combination of a distributed search, and a cascade-driven weight updating scheme.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Topographic feature maps are low dimensional representations of data, that
preserve spatial dependencies. Current methods of training such maps (e.g. self
organizing maps - SOM, generative topographic maps) require centralized control
and synchronous execution, which restricts scalability. We present an algorithm
that uses $N$ autonomous units to generate a feature map by distributed
asynchronous training. Unit autonomy is achieved by sparse interaction in time
\& space through the combination of a distributed heuristic search, and a
cascade-driven weight updating scheme governed by two rules: a unit i) adapts
when it receives either a sample, or the weight vector of a neighbor, and ii)
broadcasts its weight vector to its neighbors after adapting for a predefined
number of times. Thus, a vector update can trigger an avalanche of adaptation.
We map avalanching to a statistical mechanics model, which allows us to
parametrize the statistical properties of cascading. Using MNIST, we
empirically investigate the effect of the heuristic search accuracy and the
cascade parameters on map quality. We also provide empirical evidence that
algorithm complexity scales at most linearly with system size $N$. The proposed
approach is found to perform comparably with similar methods in classification
tasks across multiple datasets.
Related papers
- A Paradigm Shift in Mouza Map Vectorization: A Human-Machine Collaboration Approach [2.315458677488431]
Current manual digitization methods are time-consuming and labor-intensive.
Our study proposes a semi-automated approach to streamline the digitization process, saving both time and human resources.
arXiv Detail & Related papers (2024-10-21T12:47:36Z) - DTCLMapper: Dual Temporal Consistent Learning for Vectorized HD Map Construction [20.6143278960295]
This paper focuses on temporal instance consistency and temporal map consistency learning.
DTCLMapper is a dual-stream temporal consistency learning module that combines instance embedding with geometry maps.
Experiments on well-recognized benchmarks indicate that the proposed DTCLMapper achieves state-of-the-art performance in vectorized mapping tasks.
arXiv Detail & Related papers (2024-05-09T02:58:55Z) - EgoVM: Achieving Precise Ego-Localization using Lightweight Vectorized
Maps [9.450650025266379]
We present EgoVM, an end-to-end localization network that achieves comparable localization accuracy to prior state-of-the-art methods.
We employ a set of learnable semantic embeddings to encode the semantic types of map elements and supervise them with semantic segmentation.
We adopt a robust histogram-based pose solver to estimate the optimal pose by searching exhaustively over candidate poses.
arXiv Detail & Related papers (2023-07-18T06:07:25Z) - Automated classification of pre-defined movement patterns: A comparison
between GNSS and UWB technology [55.41644538483948]
Real-time location systems (RTLS) allow for collecting data from human movement patterns.
The current study aims to design and evaluate an automated framework to classify human movement patterns in small areas.
arXiv Detail & Related papers (2023-03-10T14:46:42Z) - Scaling Structured Inference with Randomization [64.18063627155128]
We propose a family of dynamic programming (RDP) randomized for scaling structured models to tens of thousands of latent states.
Our method is widely applicable to classical DP-based inference.
It is also compatible with automatic differentiation so can be integrated with neural networks seamlessly.
arXiv Detail & Related papers (2021-12-07T11:26:41Z) - Multiway Non-rigid Point Cloud Registration via Learned Functional Map
Synchronization [105.14877281665011]
We present SyNoRiM, a novel way to register multiple non-rigid shapes by synchronizing the maps relating learned functions defined on the point clouds.
We demonstrate via extensive experiments that our method achieves a state-of-the-art performance in registration accuracy.
arXiv Detail & Related papers (2021-11-25T02:37:59Z) - Transformer-based Map Matching Model with Limited Ground-Truth Data
using Transfer-Learning Approach [6.510061176722248]
In many trajectory-based applications, it is necessary to map raw GPS trajectories onto road networks in digital maps.
In this paper, we consider the map-matching task from the data perspective, proposing a deep learning-based map-matching model.
We generate synthetic trajectory data to pre-train the Transformer model and then fine-tune the model with a limited number of ground-truth data.
arXiv Detail & Related papers (2021-08-01T11:51:11Z) - MFGNet: Dynamic Modality-Aware Filter Generation for RGB-T Tracking [72.65494220685525]
We propose a new dynamic modality-aware filter generation module (named MFGNet) to boost the message communication between visible and thermal data.
We generate dynamic modality-aware filters with two independent networks. The visible and thermal filters will be used to conduct a dynamic convolutional operation on their corresponding input feature maps respectively.
To address issues caused by heavy occlusion, fast motion, and out-of-view, we propose to conduct a joint local and global search by exploiting a new direction-aware target-driven attention mechanism.
arXiv Detail & Related papers (2021-07-22T03:10:51Z) - ICON: Learning Regular Maps Through Inverse Consistency [19.27928605302463]
We explore what induces regularity for spatial transformations, e.g., when computing image registrations.
We find that deep networks combined with an inverse consistency loss and randomized off-grid yield well behaved, approximately diffeomorphic, spatial transformations.
Despite the simplicity of this approach, our experiments present compelling evidence, on both synthetic and real data, that regular maps can be obtained without carefully tuned explicit regularizers and competitive registration performance.
arXiv Detail & Related papers (2021-05-10T15:52:12Z) - Learning Optical Flow from a Few Matches [67.83633948984954]
We show that the dense correlation volume representation is redundant and accurate flow estimation can be achieved with only a fraction of elements in it.
Experiments show that our method can reduce computational cost and memory use significantly, while maintaining high accuracy.
arXiv Detail & Related papers (2021-04-05T21:44:00Z) - Learning Lane Graph Representations for Motion Forecasting [92.88572392790623]
We construct a lane graph from raw map data to preserve the map structure.
We exploit a fusion network consisting of four types of interactions, actor-to-lane, lane-to-lane, lane-to-actor and actor-to-actor.
Our approach significantly outperforms the state-of-the-art on the large scale Argoverse motion forecasting benchmark.
arXiv Detail & Related papers (2020-07-27T17:59:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.