論文の概要: Multimodal LLMs for health grounded in individual-specific data
- arxiv url: http://arxiv.org/abs/2307.09018v1
- Date: Tue, 18 Jul 2023 07:12:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-19 16:02:15.112049
- Title: Multimodal LLMs for health grounded in individual-specific data
- Title(参考訳): 個別データに基づく健康のためのマルチモーダルLCM
- Authors: Anastasiya Belyaeva, Justin Cosentino, Farhad Hormozdiari, Cory Y.
McLean, Nicholas A. Furlotte
- Abstract要約: 基礎となる大規模言語モデル(LLM)は、健康を含む幅広い分野のタスクを解く素晴らしい能力を示している。
我々は、個人固有のデータに基づいて、健康のためのマルチモーダルLSMを作成するための一歩を踏み出した。
我々は,HLMが高次元時系列データに加えて,人口統計学的,臨床的特徴を効果的に利用し,疾患リスクを推定できることを示した。
- 参考スコア(独自算出の注目度): 1.9949261242626626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Foundation large language models (LLMs) have shown an impressive ability to
solve tasks across a wide range of fields including health. To effectively
solve personalized health tasks, LLMs need the ability to ingest a diversity of
data modalities that are relevant to an individual's health status. In this
paper, we take a step towards creating multimodal LLMs for health that are
grounded in individual-specific data by developing a framework (HeLM: Health
Large Language Model for Multimodal Understanding) that enables LLMs to use
high-dimensional clinical modalities to estimate underlying disease risk. HeLM
encodes complex data modalities by learning an encoder that maps them into the
LLM's token embedding space and for simple modalities like tabular data by
serializing the data into text. Using data from the UK Biobank, we show that
HeLM can effectively use demographic and clinical features in addition to
high-dimensional time-series data to estimate disease risk. For example, HeLM
achieves an AUROC of 0.75 for asthma prediction when combining tabular and
spirogram data modalities compared with 0.49 when only using tabular data.
Overall, we find that HeLM outperforms or performs at parity with classical
machine learning approaches across a selection of eight binary traits.
Furthermore, we investigate the downstream uses of this model such as its
generalizability to out-of-distribution traits and its ability to power
conversations around individual health and wellness.
- Abstract(参考訳): 基礎となる大規模言語モデル(LLM)は、健康を含む幅広い分野のタスクを解く素晴らしい能力を示している。
パーソナライズされた健康タスクを効果的に解決するために、LLMは個人の健康状態に関連するさまざまなデータモダリティを抽出する能力が必要である。
本稿では,マルチモーダル理解のための健康大言語モデル (helm: health large language model for multimodal understanding) を開発し,基礎疾患リスクを推定するために高次元臨床モダリティ(high-dimensional clinical modality)を活用することを可能にする。
HeLMは複雑なデータモダリティをLLMのトークン埋め込み空間にマッピングするエンコーダを学習し、データをテキストにシリアライズすることで表データのような単純なモダリティを符号化する。
英国バイオバンクのデータを用いて,HeLMは高次元時系列データに加えて,人口統計学的,臨床的特徴を効果的に利用し,疾患リスクを推定できることを示した。
例えば、HeLMは、表状データのみを使用する場合の0.49と比較して、表状データとスピログラムデータを組み合わせた場合の喘息予測のためのAUROCの0.75を達成している。
全体として、Helmは8つのバイナリ特性から選択した古典的な機械学習アプローチよりも優れ、あるいは同等に動作する。
さらに, 分布特性に対する一般化可能性や, 個人の健康と健康に関する会話を駆動する能力など, このモデルの下流利用について検討した。
関連論文リスト
- LLM-Forest for Health Tabular Data Imputation [37.14344322899091]
巨大なコーパスで訓練された大規模言語モデル(LLM)は、データ生成に強い可能性を示している。
筆者らは,自信に基づく重み付き投票を伴う,数発の学習用LLM"ツリー"の"フォレスト"を導入した,新しいフレームワーク LLM-Forest を提案する。
このフレームワークは、2部情報グラフという新しい概念に基づいて構築され、高品質な関連する隣り合うエントリを識別する。
論文 参考訳(メタデータ) (2024-10-28T20:42:46Z) - RespLLM: Unifying Audio and Text with Multimodal LLMs for Generalized Respiratory Health Prediction [20.974460332254544]
RespLLMは、呼吸健康予測のためのテキストと音声の表現を統一する新しいフレームワークである。
我々の研究は、異種データの知覚、聴取、理解が可能なマルチモーダルモデルの基礎を築いた。
論文 参考訳(メタデータ) (2024-10-07T17:06:11Z) - When Raw Data Prevails: Are Large Language Model Embeddings Effective in Numerical Data Representation for Medical Machine Learning Applications? [8.89829757177796]
大規模言語モデルの最後の隠れ状態からベクター表現が医療診断および予後に有効であることを示す。
我々は,異常な生理的データを表すため,ゼロショット設定の命令調整LDMに着目し,それらのユーティリティを特徴抽出器として評価する。
医学MLタスクでは生データの特徴が依然として有効であることが示唆されているが、ゼロショットLSM埋め込みは競争力のある結果を示している。
論文 参考訳(メタデータ) (2024-08-15T03:56:40Z) - MedTsLLM: Leveraging LLMs for Multimodal Medical Time Series Analysis [6.30440420617113]
MedTsLLMは、時系列データとリッチな文脈情報をテキスト形式で統合し、生理的信号を解析する汎用多モーダル大規模言語モデル(LLM)フレームワークである。
本研究は,連続時間における意味的セグメンテーション,境界検出,異常検出という,臨床的関連性のある3つのタスクを実行する。
我々のモデルは、深層学習モデル、他のLSM、および複数の医療領域における臨床方法など、最先端のベースラインよりも優れています。
論文 参考訳(メタデータ) (2024-08-14T18:57:05Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Entropy Law: The Story Behind Data Compression and LLM Performance [115.70395740286422]
モデル性能はトレーニングデータの圧縮比と負の相関関係にあり,トレーニング損失が小さくなるのが普通である。
エントロピー法則の知見に基づいて, 極めて効率的で普遍的なデータ選択法を提案する。
また,モデルトレーニング開始時の潜在的な性能リスクを検出するエントロピー法則の興味深い応用を提案する。
論文 参考訳(メタデータ) (2024-07-09T08:14:29Z) - Developing Healthcare Language Model Embedding Spaces [0.20971479389679337]
事前トレーニングされた大規模言語モデル(LLM)は、医療中心のテキストのようなドメイン外のデータセットに苦労することが多い。
従来のマスキング言語モデリング、Deep Contrastive Learning for Unsupervised Textual Representations(DeCLUTR)、およびヘルスケア設定からメタデータカテゴリを利用する新しい事前学習目標の3つの手法が評価されている。
対照的に訓練されたモデルは、分類タスクにおける他のアプローチよりも優れており、限られたラベル付きデータから強力なパフォーマンスを提供し、必要なモデルパラメータの更新を少なくする。
論文 参考訳(メタデータ) (2024-03-28T19:31:32Z) - Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes [57.62036621319563]
本稿では,Large Language Models (LLMs) の知識を低データ構造におけるデータ拡張に活用したCLLMを紹介する。
従来のジェネレータと比較して,低データ方式におけるCLLMの優れた性能を示す。
論文 参考訳(メタデータ) (2023-12-19T12:34:46Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
タブラルデータはしばしばテキストに隠され、特に医学的診断報告に使用される。
本稿では,TEMED-LLM と呼ばれるテキスト医療報告から構造化表状データを抽出する手法を提案する。
本手法は,医学診断における最先端のテキスト分類モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-08T09:12:28Z) - An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT [80.33783969507458]
放射線医学報告の「印象」セクションは、放射線医と他の医師とのコミュニケーションにとって重要な基盤である。
近年の研究では、大規模医療用テキストデータを用いた印象自動生成の有望な成果が得られている。
これらのモデルは、しばしば大量の医療用テキストデータを必要とし、一般化性能が劣る。
論文 参考訳(メタデータ) (2023-04-17T17:13:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。