Online Self-Supervised Thermal Water Segmentation for Aerial Vehicles
- URL: http://arxiv.org/abs/2307.09027v1
- Date: Tue, 18 Jul 2023 07:35:28 GMT
- Title: Online Self-Supervised Thermal Water Segmentation for Aerial Vehicles
- Authors: Connor Lee, Jonathan Gustafsson Frennert, Lu Gan, Matthew Anderson,
Soon-Jo Chung
- Abstract summary: We present a new method to adapt an RGB-trained water segmentation network to target-domain aerial thermal imagery using online self-supervision.
This new thermal capability enables current autonomous aerial robots operating in near-shore environments to perform tasks such as visual navigation, bathymetry, and flow tracking at night.
- Score: 6.3267657083758735
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new method to adapt an RGB-trained water segmentation network to
target-domain aerial thermal imagery using online self-supervision by
leveraging texture and motion cues as supervisory signals. This new thermal
capability enables current autonomous aerial robots operating in near-shore
environments to perform tasks such as visual navigation, bathymetry, and flow
tracking at night. Our method overcomes the problem of scarce and
difficult-to-obtain near-shore thermal data that prevents the application of
conventional supervised and unsupervised methods. In this work, we curate the
first aerial thermal near-shore dataset, show that our approach outperforms
fully-supervised segmentation models trained on limited target-domain thermal
data, and demonstrate real-time capabilities onboard an Nvidia Jetson embedded
computing platform. Code and datasets used in this work will be available at:
https://github.com/connorlee77/uav-thermal-water-segmentation.
Related papers
- Efficient Self-Supervised Learning for Earth Observation via Dynamic Dataset Curation [67.23953699167274]
Self-supervised learning (SSL) has enabled the development of vision foundation models for Earth Observation (EO)
In EO, this challenge is amplified by the redundancy and heavy-tailed distributions common in satellite imagery.
We propose a dynamic dataset pruning strategy designed to improve SSL pre-training by maximizing dataset diversity and balance.
arXiv Detail & Related papers (2025-04-09T15:13:26Z) - Semantics from Space: Satellite-Guided Thermal Semantic Segmentation Annotation for Aerial Field Robots [8.265009823753982]
We present a new method to automatically generate semantic segmentation annotations for thermal imagery captured from an aerial vehicle.
This new capability overcomes the challenge of developing thermal semantic perception algorithms for field robots.
Our approach can produce highly-precise semantic segmentation labels using low-resolution satellite land cover data for little-to-no cost.
arXiv Detail & Related papers (2024-03-21T00:59:35Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - Unsupervised Restoration of Weather-affected Images using Deep Gaussian
Process-based CycleGAN [92.15895515035795]
We describe an approach for supervising deep networks that are based on CycleGAN.
We introduce new losses for training CycleGAN that lead to more effective training, resulting in high-quality reconstructions.
We demonstrate that the proposed method can be effectively applied to different restoration tasks like de-raining, de-hazing and de-snowing.
arXiv Detail & Related papers (2022-04-23T01:30:47Z) - ADAPT: An Open-Source sUAS Payload for Real-Time Disaster Prediction and
Response with AI [55.41644538483948]
Small unmanned aircraft systems (sUAS) are becoming prominent components of many humanitarian assistance and disaster response operations.
We have developed the free and open-source ADAPT multi-mission payload for deploying real-time AI and computer vision onboard a sUAS.
We demonstrate the example mission of real-time, in-flight ice segmentation to monitor river ice state and provide timely predictions of catastrophic flooding events.
arXiv Detail & Related papers (2022-01-25T14:51:19Z) - Meta-UDA: Unsupervised Domain Adaptive Thermal Object Detection using
Meta-Learning [64.92447072894055]
Infrared (IR) cameras are robust under adverse illumination and lighting conditions.
We propose an algorithm meta-learning framework to improve existing UDA methods.
We produce a state-of-the-art thermal detector for the KAIST and DSIAC datasets.
arXiv Detail & Related papers (2021-10-07T02:28:18Z) - Object Detection in Thermal Spectrum for Advanced Driver-Assistance
Systems (ADAS) [0.5156484100374058]
Object detection in thermal infrared spectrum provides more reliable data source in low-lighting conditions and different weather conditions.
This paper is about exploring and adapting state-of-the-art object and vision framework on thermal vision with seven distinct classes for advanced driver-assistance systems (ADAS)
The trained network variants on public datasets are validated on test data with three different test approaches.
The efficacy of trained networks is tested on locally gathered novel test-data captured with an uncooled LWIR prototype thermal camera.
arXiv Detail & Related papers (2021-09-20T21:38:55Z) - Energy-Efficient Model Compression and Splitting for Collaborative
Inference Over Time-Varying Channels [52.60092598312894]
We propose a technique to reduce the total energy bill at the edge device by utilizing model compression and time-varying model split between the edge and remote nodes.
Our proposed solution results in minimal energy consumption and $CO$ emission compared to the considered baselines.
arXiv Detail & Related papers (2021-06-02T07:36:27Z) - Robust pedestrian detection in thermal imagery using synthesized images [39.33977680993236]
We propose a method for improving pedestrian detection in the thermal domain using two stages.
First, a generative data augmentation approach is used, then a domain adaptation method using generated data adapts an RGB pedestrian detector.
Our detector achieves the best single-modality detection results on KAIST with respect to the state-of-the-art.
arXiv Detail & Related papers (2021-02-03T11:08:31Z) - Exploring Thermal Images for Object Detection in Underexposure Regions
for Autonomous Driving [67.69430435482127]
Underexposure regions are vital to construct a complete perception of the surroundings for safe autonomous driving.
The availability of thermal cameras has provided an essential alternate to explore regions where other optical sensors lack in capturing interpretable signals.
This work proposes a domain adaptation framework which employs a style transfer technique for transfer learning from visible spectrum images to thermal images.
arXiv Detail & Related papers (2020-06-01T09:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.