論文の概要: Learning Adaptive Neighborhoods for Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2307.09065v1
- Date: Tue, 18 Jul 2023 08:37:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-19 15:43:18.085412
- Title: Learning Adaptive Neighborhoods for Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークのための適応型近傍学習
- Authors: Avishkar Saha, Oscar Mendez, Chris Russell, Richard Bowden
- Abstract要約: グラフ畳み込みネットワーク(GCN)は、グラフ構造化データのエンドツーエンド学習を可能にする。
本稿では,グラフトポロジを構築する新しいエンドツーエンドの微分可能なグラフ生成器を提案する。
私たちのモジュールは、グラフ畳み込み操作を含む既存のパイプラインに簡単に統合できます。
- 参考スコア(独自算出の注目度): 45.94778766867247
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Graph convolutional networks (GCNs) enable end-to-end learning on graph
structured data. However, many works assume a given graph structure. When the
input graph is noisy or unavailable, one approach is to construct or learn a
latent graph structure. These methods typically fix the choice of node degree
for the entire graph, which is suboptimal. Instead, we propose a novel
end-to-end differentiable graph generator which builds graph topologies where
each node selects both its neighborhood and its size. Our module can be readily
integrated into existing pipelines involving graph convolution operations,
replacing the predetermined or existing adjacency matrix with one that is
learned, and optimized, as part of the general objective. As such it is
applicable to any GCN. We integrate our module into trajectory prediction,
point cloud classification and node classification pipelines resulting in
improved accuracy over other structure-learning methods across a wide range of
datasets and GCN backbones.
- Abstract(参考訳): グラフ畳み込みネットワーク(GCN)は、グラフ構造化データのエンドツーエンド学習を可能にする。
しかし、多くの著作物が与えられたグラフ構造を仮定している。
入力グラフがノイズや利用できない場合、一つのアプローチは潜在グラフ構造を構築し、学習することである。
これらの手法は典型的にはグラフ全体のノード次数の選択を補正する。
そこで我々は,各ノードが近傍と大きさを選択するグラフトポロジを構築する,新しいエンドツーエンドの微分可能なグラフ生成器を提案する。
このモジュールは、グラフ畳み込み操作を含む既存のパイプラインに容易に統合でき、一般的な目的の一部として、所定のまたは既存の隣接マトリックスを学習し、最適化したものに置き換えることができます。
したがって、任意のGCNに適用できる。
我々のモジュールを軌道予測、ポイントクラウド分類、ノード分類パイプラインに統合することで、幅広いデータセットとGCNバックボーンにわたる他の構造学習手法よりも精度が向上する。
関連論文リスト
- Improving Graph Neural Networks by Learning Continuous Edge Directions [0.0]
グラフニューラルネットワーク(GNN)は、従来、非指向グラフ上の拡散に似たメッセージパッシング機構を採用している。
私たちのキーとなる洞察は、ファジィエッジ方向をグラフのエッジに割り当てることです。
ファジィエッジを持つグラフを学習するためのフレームワークとして,Continuous Edge Direction (CoED) GNNを提案する。
論文 参考訳(メタデータ) (2024-10-18T01:34:35Z) - Scalable Graph Compressed Convolutions [68.85227170390864]
ユークリッド畳み込みのための入力グラフのキャリブレーションに置換を適用する微分可能手法を提案する。
グラフキャリブレーションに基づいて,階層型グラフ表現学習のための圧縮畳み込みネットワーク(CoCN)を提案する。
論文 参考訳(メタデータ) (2024-07-26T03:14:13Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
本稿では,この新たな問題設定の数学的定義を紹介する。
一つのグラフ共有構造学習者と複数のグラフ固有GNNを協調する一般的なフレームワークを考案する。
十分に訓練された構造学習者は、微調整なしで、目に見えない対象グラフの適応的な構造を直接生成することができる。
論文 参考訳(メタデータ) (2023-06-20T03:33:22Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Representing Long-Range Context for Graph Neural Networks with Global
Attention [37.212747564546156]
本稿では,トランスフォーマーに基づく自己認識を用いて,長距離ペア関係の学習を提案する。
提案手法はGraphTransと呼ばれ,標準のGNNモジュールに代えて置換不変なTransformerモジュールを適用している。
その結果,グラフ構造を持たない純粋学習に基づくアプローチは,グラフ上の高レベルな長距離関係を学習するのに適している可能性が示唆された。
論文 参考訳(メタデータ) (2022-01-21T18:16:21Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
本稿では、上記の制約に対処する構造対応不均一グラフニューラルネットワーク(SHGNN)を提案する。
まず,メタパス内の中間ノードの局所構造情報を取得するために,特徴伝搬モジュールを利用する。
次に、ツリーアテンションアグリゲータを使用して、グラフ構造情報をメタパス上のアグリゲーションモジュールに組み込む。
最後に、メタパスアグリゲータを利用して、異なるメタパスから集約された情報を融合する。
論文 参考訳(メタデータ) (2021-12-12T14:18:18Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
グラフ埋め込みは、高次元および非ユークリッド特徴空間でデータ構造を変換しエンコードする方法である。
CensNetは一般的なグラフ埋め込みフレームワークで、ノードとエッジの両方を潜在機能空間に埋め込む。
提案手法は,4つのグラフ学習課題における最先端のパフォーマンスを達成または一致させる。
論文 参考訳(メタデータ) (2020-10-25T22:39:31Z) - GraphCrop: Subgraph Cropping for Graph Classification [36.33477716380905]
我々は,サブ構造欠落の現実的なノイズをシミュレートするtextbfGraphCrop (Subgraph Cropping) データ拡張法を開発した。
グラフ分類のための有効な構造コンテキストを保存することにより、GNNはグローバルな意味でグラフ構造の内容を理解することを奨励する。
論文 参考訳(メタデータ) (2020-09-22T14:05:41Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。