A Federated learning model for Electric Energy management using
Blockchain Technology
- URL: http://arxiv.org/abs/2307.09080v1
- Date: Tue, 18 Jul 2023 09:00:26 GMT
- Title: A Federated learning model for Electric Energy management using
Blockchain Technology
- Authors: Muhammad Shoaib Farooq, Azeen Ahmed Hayat
- Abstract summary: Energy shortfall and electricity load shedding are the main problems for developing countries.
The improved energy management and use of renewable sources can be significant to resolve energy crisis.
It is necessary to increase the use of renewable energy sources to meet the increasing energy demand due to high prices of fossil-fuel based energy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Energy shortfall and electricity load shedding are the main problems for
developing countries. The main causes are lack of management in the energy
sector and the use of non-renewable energy sources. The improved energy
management and use of renewable sources can be significant to resolve energy
crisis. It is necessary to increase the use of renewable energy sources (RESs)
to meet the increasing energy demand due to high prices of fossil-fuel based
energy. Federated learning (FL) is the most emerging technique in the field of
artificial intelligence. Federated learning helps to generate global model at
server side by ensemble locally trained models at remote edges sites while
preserving data privacy. The global model used to predict energy demand to
satisfy the needs of consumers. In this article, we have proposed Blockchain
based safe distributed ledger technology for transaction of data between
prosumer and consumer to ensure their transparency, traceability and security.
Furthermore, we have also proposed a Federated learning model to forecast the
energy requirements of consumer and prosumer. Moreover, Blockchain has been
used to store excess energy data from prosumer for better management of energy
between prosumer and grid. Lastly, the experiment results revealed that
renewable energy sources have produced better and comparable results to other
non-renewable energy resources.
Related papers
- Decentralized Energy Marketplace via NFTs and AI-based Agents [4.149465156450793]
The paper introduces an advanced Decentralized Energy Marketplace (DEM) integrating blockchain technology and artificial intelligence.
The proposed framework uses Non-Fungible Tokens (NFTs) to represent unique energy profiles in a transparent and secure trading environment.
A notable innovation is the use of smart contracts, ensuring high efficiency and integrity in energy transactions.
arXiv Detail & Related papers (2023-11-17T09:15:43Z) - Exploring the Privacy-Energy Consumption Tradeoff for Split Federated Learning [51.02352381270177]
Split Federated Learning (SFL) has recently emerged as a promising distributed learning technology.
The choice of the cut layer in SFL can have a substantial impact on the energy consumption of clients and their privacy.
This article provides a comprehensive overview of the SFL process and thoroughly analyze energy consumption and privacy.
arXiv Detail & Related papers (2023-11-15T23:23:42Z) - Non-Intrusive Electric Load Monitoring Approach Based on Current Feature
Visualization for Smart Energy Management [51.89904044860731]
We employ computer vision techniques of AI to design a non-invasive load monitoring method for smart electric energy management.
We propose to recognize all electric loads from color feature images using a U-shape deep neural network with multi-scale feature extraction and attention mechanism.
arXiv Detail & Related papers (2023-08-08T04:52:19Z) - Predicting Short Term Energy Demand in Smart Grid: A Deep Learning Approach for Integrating Renewable Energy Sources in Line with SDGs 7, 9, and 13 [0.0]
We propose a deep learning model for predicting energy demand in a smart power grid.
We use long short-term memory networks to capture complex patterns and dependencies in energy demand data.
The proposed model can accurately predict energy demand with a mean absolute error of 1.4%.
arXiv Detail & Related papers (2023-04-08T12:30:59Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - Battery and Hydrogen Energy Storage Control in a Smart Energy Network
with Flexible Energy Demand using Deep Reinforcement Learning [2.5666730153464465]
We introduce a hybrid energy storage system composed of battery and hydrogen energy storage.
We propose a deep reinforcement learning-based control strategy to optimise the scheduling of the hybrid energy storage system and energy demand in real-time.
arXiv Detail & Related papers (2022-08-26T16:47:48Z) - Applications of blockchain and artificial intelligence technologies for
enabling prosumers in smart grids: A review [12.609078866334615]
Governments' net zero emission target aims at increasing the share of renewable energy sources.
This paper addresses how to incorporate the blockchain and AI in the smart grids for facilitating prosumers to participate in energy markets.
arXiv Detail & Related papers (2022-02-21T10:27:31Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
An Intelligent IoT Environment (iIoTe) is comprised of heterogeneous devices that can collaboratively execute semi-autonomous IoT applications.
This paper provides a state-of-the-art overview of these technologies and illustrates their functionality and performance, with special attention to the tradeoff among resources, latency, privacy and energy consumption.
arXiv Detail & Related papers (2021-10-04T19:41:42Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z) - A Review of Blockchain-based Smart Grid: Applications,Opportunities, and
Future Directions [0.0]
This paper provides a review of blockchain architecture, concepts, and applications in smart grids.
Various potential opportunities for blockchain technology with smart grids are also discussed.
arXiv Detail & Related papers (2020-01-31T07:00:10Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
We propose a data-driven control algorithm based on neural networks to reduce this cost of model identification.
We validate our learning and control algorithms on a two-story building with ten independently controlled zones, located in Italy.
arXiv Detail & Related papers (2020-01-22T00:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.