Load and Renewable Energy Forecasting Using Deep Learning for Grid Stability
- URL: http://arxiv.org/abs/2501.13412v1
- Date: Thu, 23 Jan 2025 06:33:33 GMT
- Title: Load and Renewable Energy Forecasting Using Deep Learning for Grid Stability
- Authors: Kamal Sarkar,
- Abstract summary: Short-term load and renewable energy forecasting can help stabilize the grid, maximize energy storage, and guarantee the effective use of renewable resources.
In this article, we will focus mainly on CNN and LSTM-based forecasting methods.
- Score: 0.0
- License:
- Abstract: As the energy landscape changes quickly, grid operators face several challenges, especially when integrating renewable energy sources with the grid. The most important challenge is to balance supply and demand because the solar and wind energy are highly unpredictable. When dealing with such uncertainty, trustworthy short-term load and renewable energy forecasting can help stabilize the grid, maximize energy storage, and guarantee the effective use of renewable resources. Physical models and statistical techniques were the previous approaches employed for this kind of forecasting tasks. In forecasting renewable energy, machine learning and deep learning techniques have recently demonstrated encouraging results. More specifically, the deep learning techniques like CNN and LSTM and the conventional machine learning techniques like regression that are mostly utilized for load and renewable energy forecasting tasks. In this article, we will focus mainly on CNN and LSTM-based forecasting methods.
Related papers
- The Energy Loss Phenomenon in RLHF: A New Perspective on Mitigating Reward Hacking [72.45765726160151]
This work identifies the Energy Loss Phenomenon in Reinforcement Learning from Human Feedback and its connection to reward hacking.
We propose an Energy loss-aware PPO algorithm (EPPO) which penalizes the increase in energy loss in the final layer during reward calculation to prevent excessive energy loss.
arXiv Detail & Related papers (2025-01-31T18:10:53Z) - Just In Time Transformers [2.7350304370706797]
JITtrans is a novel transformer deep learning model that significantly improves energy consumption forecasting accuracy.
Our findings highlight the potential of advanced predictive technologies to revolutionize energy management and advance sustainable power systems.
arXiv Detail & Related papers (2024-10-22T10:33:00Z) - Power Plays: Unleashing Machine Learning Magic in Smart Grids [0.0]
Machine learning algorithms analyze vast amounts of data from smart meters, sensors, and other grid components to optimize energy distribution, forecast demand, and detect irregularities that could indicate potential failures.
The use of predictive models helps in anticipating equipment failures, thereby improving the reliability of the energy supply.
However, the deployment of these technologies also raises challenges related to data privacy, security, and the need for robust infrastructure.
arXiv Detail & Related papers (2024-10-20T15:39:08Z) - Empowering Distributed Solutions in Renewable Energy Systems and Grid
Optimization [3.8979646385036175]
Machine learning (ML) advancements play a crucial role in empowering renewable energy sources and improving grid management.
The incorporation of big data and ML into smart grids offers several advantages, including heightened energy efficiency.
However, challenges like handling large data volumes, ensuring cybersecurity, and obtaining specialized expertise must be addressed.
arXiv Detail & Related papers (2023-10-24T02:45:16Z) - A Federated learning model for Electric Energy management using
Blockchain Technology [0.0]
Energy shortfall and electricity load shedding are the main problems for developing countries.
The improved energy management and use of renewable sources can be significant to resolve energy crisis.
It is necessary to increase the use of renewable energy sources to meet the increasing energy demand due to high prices of fossil-fuel based energy.
arXiv Detail & Related papers (2023-07-18T09:00:26Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Predicting Short Term Energy Demand in Smart Grid: A Deep Learning Approach for Integrating Renewable Energy Sources in Line with SDGs 7, 9, and 13 [0.0]
We propose a deep learning model for predicting energy demand in a smart power grid.
We use long short-term memory networks to capture complex patterns and dependencies in energy demand data.
The proposed model can accurately predict energy demand with a mean absolute error of 1.4%.
arXiv Detail & Related papers (2023-04-08T12:30:59Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - A Multi-Agent Deep Reinforcement Learning Approach for a Distributed
Energy Marketplace in Smart Grids [58.666456917115056]
This paper presents a Reinforcement Learning based energy market for a prosumer dominated microgrid.
The proposed market model facilitates a real-time and demanddependent dynamic pricing environment, which reduces grid costs and improves the economic benefits for prosumers.
arXiv Detail & Related papers (2020-09-23T02:17:51Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.