論文の概要: Division Gets Better: Learning Brightness-Aware and Detail-Sensitive
Representations for Low-Light Image Enhancement
- arxiv url: http://arxiv.org/abs/2307.09104v1
- Date: Tue, 18 Jul 2023 09:52:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-19 15:34:08.860263
- Title: Division Gets Better: Learning Brightness-Aware and Detail-Sensitive
Representations for Low-Light Image Enhancement
- Title(参考訳): 低照度画像強調のための明度認識と詳細感性表現の学習
- Authors: Huake Wang, Xiaoyang Yan, Xingsong Hou, Junhui Li, Yujie Dun, Kaibing
Zhang
- Abstract要約: LCDBNetは、輝度調整ネットワーク(LAN)と色復元ネットワーク(CRN)の2つのブランチで構成されている。
LANは、長距離依存と局所的な注意相関を利用した輝度認識機能を学ぶ責任を負う。
CRNはマルチレベルウェーブレット分解によるディテールセンシティブな特徴の学習に重点を置いている。
最後に、融合ネットワークは、学習した特徴をブレンドして視覚的に印象的な画像を生成するように設計されている。
- 参考スコア(独自算出の注目度): 10.899693396348171
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-light image enhancement strives to improve the contrast, adjust the
visibility, and restore the distortion in color and texture. Existing methods
usually pay more attention to improving the visibility and contrast via
increasing the lightness of low-light images, while disregarding the
significance of color and texture restoration for high-quality images. Against
above issue, we propose a novel luminance and chrominance dual branch network,
termed LCDBNet, for low-light image enhancement, which divides low-light image
enhancement into two sub-tasks, e.g., luminance adjustment and chrominance
restoration. Specifically, LCDBNet is composed of two branches, namely
luminance adjustment network (LAN) and chrominance restoration network (CRN).
LAN takes responsibility for learning brightness-aware features leveraging
long-range dependency and local attention correlation. While CRN concentrates
on learning detail-sensitive features via multi-level wavelet decomposition.
Finally, a fusion network is designed to blend their learned features to
produce visually impressive images. Extensive experiments conducted on seven
benchmark datasets validate the effectiveness of our proposed LCDBNet, and the
results manifest that LCDBNet achieves superior performance in terms of
multiple reference/non-reference quality evaluators compared to other
state-of-the-art competitors. Our code and pretrained model will be available.
- Abstract(参考訳): 低照度画像強調はコントラストを改善し、可視性を調整し、色やテクスチャの歪みを復元する。
既存の手法では、低照度画像の明度を高めることで視認性やコントラストの向上に注意を払うが、高品質画像における色やテクスチャの復元の重要性は無視できる。
本稿では,低照度画像強調を2つのサブタスク,例えば輝度調整と色復元に分割する低照度画像強調のための,LCDBNetと呼ばれる新しい輝度・彩色二重分岐ネットワークを提案する。
具体的には、LCDBNetは、輝度調整ネットワーク(LAN)と色復元ネットワーク(CRN)の2つのブランチから構成される。
LANは、長距離依存と局所的な注意相関を利用した輝度認識機能を学ぶ責任を負う。
CRNはマルチレベルウェーブレット分解によるディテールセンシティブな特徴の学習に重点を置いている。
最後に、融合ネットワークは、学習した特徴をブレンドして視覚的に印象的な画像を生成するように設計されている。
その結果,LCDBNetは,複数の参照/非参照品質評価器において,他の最先端のコンペティタと比較して優れた性能を発揮することが示された。
コードと事前訓練されたモデルが利用可能になります。
関連論文リスト
- LTCF-Net: A Transformer-Enhanced Dual-Channel Fourier Framework for Low-Light Image Restoration [1.049712834719005]
低照度画像の高精細化を目的とした新しいネットワークアーキテクチャであるLTCF-Netを導入する。
提案手法では2つの色空間(LABとYUV)を用いて色情報を効率的に分離処理する。
我々のモデルは、画像コンテンツを包括的に理解するためのTransformerアーキテクチャを取り入れている。
論文 参考訳(メタデータ) (2024-11-24T07:21:17Z) - CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement [97.95330185793358]
低照度画像強調(LLIE)は、低照度画像を改善することを目的としている。
既存の手法では、様々な明るさ劣化からの回復の不確実性と、テクスチャと色情報の喪失という2つの課題に直面している。
我々は、量子化された先行値と画像の精細化を利用して、新しいエンハンスメント手法、CodeEnhanceを提案する。
論文 参考訳(メタデータ) (2024-04-08T07:34:39Z) - You Only Need One Color Space: An Efficient Network for Low-light Image Enhancement [50.37253008333166]
低照度画像強調(LLIE)タスクは、劣化した低照度画像から詳細と視覚情報を復元する傾向がある。
水平/垂直インテンシティ(HVI)と呼ばれる新しいトレーニング可能なカラー空間を提案する。
輝度と色をRGBチャネルから切り離して、拡張中の不安定性を緩和するだけでなく、トレーニング可能なパラメータによって異なる照明範囲の低照度画像にも適応する。
論文 参考訳(メタデータ) (2024-02-08T16:47:43Z) - CDAN: Convolutional dense attention-guided network for low-light image enhancement [2.2530496464901106]
低照度画像は、明度が低下し、色が変色し、細部が小さくなるという課題を生んでいる。
本稿では,低照度画像を改善するための新しいソリューションであるCDAN(Convolutional Dense Attention-guided Network)を紹介する。
CDANは自動エンコーダベースのアーキテクチャと、アテンション機構とスキップ接続によって補完される、畳み込みブロックと密集ブロックを統合している。
論文 参考訳(メタデータ) (2023-08-24T16:22:05Z) - Enhancing Low-Light Images in Real World via Cross-Image Disentanglement [58.754943762945864]
そこで本研究では,現実の汚職とミスアライメントされたトレーニング画像からなる,新しい低照度画像強調データセットを提案する。
本モデルでは,新たに提案したデータセットと,他の一般的な低照度データセットの両方に対して,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-01-10T03:12:52Z) - Invertible Network for Unpaired Low-light Image Enhancement [78.33382003460903]
本稿では,非可逆的ネットワークを活用して,前処理における低照度画像の強化と,非対向学習により逆向きに通常の照度画像の劣化を図ることを提案する。
対向的損失に加えて、トレーニングの安定性を確保し、より詳細な画像を保存するために、様々な損失関数を設計する。
低照度画像に対するプログレッシブ自己誘導強調処理を提案し,SOTAに対して良好な性能を示す。
論文 参考訳(メタデータ) (2021-12-24T17:00:54Z) - Learning Deep Context-Sensitive Decomposition for Low-Light Image
Enhancement [58.72667941107544]
典型的なフレームワークは、照明と反射を同時に推定することであるが、特徴空間にカプセル化されたシーンレベルの文脈情報を無視する。
本研究では,空間スケールにおけるシーンレベルのコンテキスト依存を生かした,コンテキスト依存型分解ネットワークアーキテクチャを提案する。
チャネル数を減らして軽量なCSDNet(LiteCSDNet)を開発する。
論文 参考訳(メタデータ) (2021-12-09T06:25:30Z) - TSN-CA: A Two-Stage Network with Channel Attention for Low-Light Image
Enhancement [11.738203047278848]
本稿では,低照度画像の明るさを高めるために,チャネル注意型2段階ネットワーク(TSN-CA)を提案する。
本手法が明度向上に優れた効果を発揮できることを示すため,広範にわたる実験を行った。
論文 参考訳(メタデータ) (2021-10-06T03:20:18Z) - Degrade is Upgrade: Learning Degradation for Low-light Image Enhancement [52.49231695707198]
2段階の工程で細部と色を精錬しながら、内在的な劣化と低照度画像を照らし出す。
カラー画像の定式化に触発されて,まず低照度入力からの劣化を推定し,環境照明色の歪みをシミュレーションし,そのコンテンツを精錬して拡散照明色の損失を回復した。
LOL1000データセットではPSNRで0.95dB、ExDarkデータセットでは3.18%のmAPでSOTAを上回った。
論文 参考訳(メタデータ) (2021-03-19T04:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。