Context-Conditional Navigation with a Learning-Based Terrain- and
Robot-Aware Dynamics Model
- URL: http://arxiv.org/abs/2307.09206v2
- Date: Thu, 20 Jul 2023 13:29:27 GMT
- Title: Context-Conditional Navigation with a Learning-Based Terrain- and
Robot-Aware Dynamics Model
- Authors: Suresh Guttikonda, Jan Achterhold, Haolong Li, Joschka Boedecker,
Joerg Stueckler
- Abstract summary: We develop a novel probabilistic, terrain- and robot-aware forward dynamics model, termed TRADYN.
We evaluate our method in a simulated 2D navigation setting with a unicycle-like robot and different terrain layouts with spatially varying friction coefficients.
- Score: 10.064627288573284
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In autonomous navigation settings, several quantities can be subject to
variations. Terrain properties such as friction coefficients may vary over time
depending on the location of the robot. Also, the dynamics of the robot may
change due to, e.g., different payloads, changing the system's mass, or wear
and tear, changing actuator gains or joint friction. An autonomous agent should
thus be able to adapt to such variations. In this paper, we develop a novel
probabilistic, terrain- and robot-aware forward dynamics model, termed TRADYN,
which is able to adapt to the above-mentioned variations. It builds on recent
advances in meta-learning forward dynamics models based on Neural Processes. We
evaluate our method in a simulated 2D navigation setting with a unicycle-like
robot and different terrain layouts with spatially varying friction
coefficients. In our experiments, the proposed model exhibits lower prediction
error for the task of long-horizon trajectory prediction, compared to
non-adaptive ablation models. We also evaluate our model on the downstream task
of navigation planning, which demonstrates improved performance in planning
control-efficient paths by taking robot and terrain properties into account.
Related papers
- Learning a Terrain- and Robot-Aware Dynamics Model for Autonomous Mobile Robot Navigation [8.261491880782769]
We propose a novel approach for learning a probabilistic, terrain- and robot-aware forward dynamics model (TRADYN)
We evaluate our method in simulation for 2D navigation of a robot with uni-cycle dynamics with varying properties on terrain with spatially varying friction coefficients.
arXiv Detail & Related papers (2024-09-17T16:46:39Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - Online Calibration of a Single-Track Ground Vehicle Dynamics Model by Tight Fusion with Visual-Inertial Odometry [8.165828311550152]
We present ST-VIO, a novel approach which tightly fuses a single-track dynamics model for wheeled ground vehicles with visual inertial odometry (VIO)
Our method calibrates and adapts the dynamics model online to improve the accuracy of forward prediction conditioned on future control inputs.
arXiv Detail & Related papers (2023-09-20T08:50:30Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
We present a self-supervised sensorimotor pre-training approach for robotics.
Our model, called RPT, is a Transformer that operates on sequences of sensorimotor tokens.
We find that sensorimotor pre-training consistently outperforms training from scratch, has favorable scaling properties, and enables transfer across different tasks, environments, and robots.
arXiv Detail & Related papers (2023-06-16T17:58:10Z) - Improving Deep Dynamics Models for Autonomous Vehicles with Multimodal
Latent Mapping of Surfaces [23.023397401781757]
We propose a new approach that learns a surface-aware dynamics model by conditioning it on a latent variable vector.
A latent mapper is trained to update these latent variables during inference from multiple modalities.
We show that by using this model, the driving performance can be improved on varying and challenging surfaces.
arXiv Detail & Related papers (2023-03-21T11:21:31Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
Operational Space Control (OSC) has been used as an effective task-space controller for manipulation.
We propose OSC for Adaptation and Robustness (OSCAR), a data-driven variant of OSC that compensates for modeling errors.
We evaluate our method on a variety of simulated manipulation problems, and find substantial improvements over an array of controller baselines.
arXiv Detail & Related papers (2021-10-02T01:21:38Z) - Meta-Reinforcement Learning for Adaptive Motor Control in Changing Robot
Dynamics and Environments [3.5309638744466167]
This work developed a meta-learning approach that adapts the control policy on the fly to different changing conditions for robust locomotion.
The proposed method constantly updates the interaction model, samples feasible sequences of actions of estimated the state-action trajectories, and then applies the optimal actions to maximize the reward.
arXiv Detail & Related papers (2021-01-19T12:57:12Z) - Trajectron++: Dynamically-Feasible Trajectory Forecasting With
Heterogeneous Data [37.176411554794214]
Reasoning about human motion is an important prerequisite to safe and socially-aware robotic navigation.
We present Trajectron++, a modular, graph-structured recurrent model that forecasts the trajectories of a general number of diverse agents.
We demonstrate its performance on several challenging real-world trajectory forecasting datasets.
arXiv Detail & Related papers (2020-01-09T16:47:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.