Nested Elimination: A Simple Algorithm for Best-Item Identification from
Choice-Based Feedback
- URL: http://arxiv.org/abs/2307.09295v1
- Date: Thu, 13 Jul 2023 05:05:30 GMT
- Title: Nested Elimination: A Simple Algorithm for Best-Item Identification from
Choice-Based Feedback
- Authors: Junwen Yang, Yifan Feng
- Abstract summary: We study the problem of best-item identification from choice-based feedback.
In this problem, a company sequentially and adaptively shows display sets to a population of customers and collects their choices.
We propose an elimination-based algorithm, namely Nested Elimination (NE), which is inspired by the nested structure implied by the information-theoretic lower bound.
- Score: 8.043586007062858
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We study the problem of best-item identification from choice-based feedback.
In this problem, a company sequentially and adaptively shows display sets to a
population of customers and collects their choices. The objective is to
identify the most preferred item with the least number of samples and at a high
confidence level. We propose an elimination-based algorithm, namely Nested
Elimination (NE), which is inspired by the nested structure implied by the
information-theoretic lower bound. NE is simple in structure, easy to
implement, and has a strong theoretical guarantee for sample complexity.
Specifically, NE utilizes an innovative elimination criterion and circumvents
the need to solve any complex combinatorial optimization problem. We provide an
instance-specific and non-asymptotic bound on the expected sample complexity of
NE. We also show NE achieves high-order worst-case asymptotic optimality.
Finally, numerical experiments from both synthetic and real data corroborate
our theoretical findings.
Related papers
- Optimal Multi-Distribution Learning [88.3008613028333]
Multi-distribution learning seeks to learn a shared model that minimizes the worst-case risk across $k$ distinct data distributions.
We propose a novel algorithm that yields an varepsilon-optimal randomized hypothesis with a sample complexity on the order of (d+k)/varepsilon2.
arXiv Detail & Related papers (2023-12-08T16:06:29Z) - Faster Stochastic Variance Reduction Methods for Compositional MiniMax
Optimization [50.10952609321302]
compositional minimax optimization is a pivotal challenge across various machine learning domains.
Current methods of compositional minimax optimization are plagued by sub-optimal complexities or heavy reliance on sizable batch sizes.
This paper introduces a novel method, called Nested STOchastic Recursive Momentum (NSTORM), which can achieve the optimal sample complexity of $O(kappa3 /epsilon3 )$.
arXiv Detail & Related papers (2023-08-18T14:57:21Z) - Debiasing Conditional Stochastic Optimization [15.901623717313493]
We study the conditional causal optimization (CSO) problem which covers a variety of applications including portfolio selection, reinforcement learning, robust learning, etc.
We develop new algorithms for the finite variant variant CSO problem that significantly improve upon existing results.
We believe that our technique has the potential to be a useful tool for addressing similar challenges in other optimization problems.
arXiv Detail & Related papers (2023-04-20T19:19:55Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - Recursive Causal Structure Learning in the Presence of Latent Variables
and Selection Bias [27.06618125828978]
We consider the problem of learning the causal MAG of a system from observational data in the presence of latent variables and selection bias.
We propose a novel computationally efficient constraint-based method that is sound and complete.
We provide experimental results to compare the proposed approach with the state of the art on both synthetic and real-world structures.
arXiv Detail & Related papers (2021-10-22T19:49:59Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
Most datasets only capture a simpler subproblem and likely suffer from spurious features.
We study adversarial robustness - a local generalization property - to reveal hard, model-specific instances and spurious features.
Unlike in other applications, where perturbation models are designed around subjective notions of imperceptibility, our perturbation models are efficient and sound.
Surprisingly, with such perturbations, a sufficiently expressive neural solver does not suffer from the limitations of the accuracy-robustness trade-off common in supervised learning.
arXiv Detail & Related papers (2021-10-21T07:28:11Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Bloom Origami Assays: Practical Group Testing [90.2899558237778]
Group testing is a well-studied problem with several appealing solutions.
Recent biological studies impose practical constraints for COVID-19 that are incompatible with traditional methods.
We develop a new method combining Bloom filters with belief propagation to scale to larger values of n (more than 100) with good empirical results.
arXiv Detail & Related papers (2020-07-21T19:31:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.