Local Minima Drive Communications in Cooperative Interaction
- URL: http://arxiv.org/abs/2307.09364v1
- Date: Tue, 18 Jul 2023 15:48:37 GMT
- Title: Local Minima Drive Communications in Cooperative Interaction
- Authors: Roger K. Moore
- Abstract summary: It is hypothesised that in cooperative tasks, the function of communication is to coordinate actions in a complex search space that contains local minima.
These principles have been verified in a computer-based simulation environment in which two independent one-dimensional agents are obliged to cooperate.
- Score: 6.709659274527638
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An important open question in human-robot interaction (HRI) is precisely when
an agent should decide to communicate, particularly in a cooperative task.
Perceptual Control Theory (PCT) tells us that agents are able to cooperate on a
joint task simply by sharing the same 'intention', thereby distributing the
effort required to complete the task among the agents. This is even true for
agents that do not possess the same abilities, so long as the goal is
observable, the combined actions are sufficient to complete the task, and there
is no local minimum in the search space. If these conditions hold, then a
cooperative task can be accomplished without any communication between the
contributing agents. However, for tasks that do contain local minima, the
global solution can only be reached if at least one of the agents adapts its
intention at the appropriate moments, and this can only be achieved by
appropriately timed communication. In other words, it is hypothesised that in
cooperative tasks, the function of communication is to coordinate actions in a
complex search space that contains local minima. These principles have been
verified in a computer-based simulation environment in which two independent
one-dimensional agents are obliged to cooperate in order to solve a
two-dimensional path-finding task.
Related papers
- CaPo: Cooperative Plan Optimization for Efficient Embodied Multi-Agent Cooperation [98.11670473661587]
CaPo improves cooperation efficiency with two phases: 1) meta-plan generation, and 2) progress-adaptive meta-plan and execution.
Experimental results on the ThreeDworld Multi-Agent Transport and Communicative Watch-And-Help tasks demonstrate that CaPo achieves much higher task completion rate and efficiency compared with state-of-the-arts.
arXiv Detail & Related papers (2024-11-07T13:08:04Z) - A Survey on Complex Tasks for Goal-Directed Interactive Agents [60.53915548970061]
This survey compiles relevant tasks and environments for evaluating goal-directed interactive agents.
An up-to-date compilation of relevant resources can be found on our project website.
arXiv Detail & Related papers (2024-09-27T08:17:53Z) - Mutual Theory of Mind in Human-AI Collaboration: An Empirical Study with LLM-driven AI Agents in a Real-time Shared Workspace Task [56.92961847155029]
Theory of Mind (ToM) significantly impacts human collaboration and communication as a crucial capability to understand others.
Mutual Theory of Mind (MToM) arises when AI agents with ToM capability collaborate with humans.
We find that the agent's ToM capability does not significantly impact team performance but enhances human understanding of the agent.
arXiv Detail & Related papers (2024-09-13T13:19:48Z) - Towards Collaborative Intelligence: Propagating Intentions and Reasoning for Multi-Agent Coordination with Large Language Models [41.95288786980204]
Current agent frameworks often suffer from dependencies on single-agent execution and lack robust inter- module communication.
We present a framework for training large language models as collaborative agents to enable coordinated behaviors in cooperative MARL.
A propagation network transforms broadcast intentions into teammate-specific communication messages, sharing relevant goals with designated teammates.
arXiv Detail & Related papers (2024-07-17T13:14:00Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
Decentralized and lifelong-adaptive multi-agent collaborative learning aims to enhance collaboration among multiple agents without a central server.
We propose DeLAMA, a decentralized multi-agent lifelong collaborative learning algorithm with dynamic collaboration graphs.
arXiv Detail & Related papers (2024-03-11T09:21:11Z) - MetaAgents: Simulating Interactions of Human Behaviors for LLM-based
Task-oriented Coordination via Collaborative Generative Agents [27.911816995891726]
We introduce collaborative generative agents, endowing LLM-based Agents with consistent behavior patterns and task-solving abilities.
We propose a novel framework that equips collaborative generative agents with human-like reasoning abilities and specialized skills.
Our work provides valuable insights into the role and evolution of Large Language Models in task-oriented social simulations.
arXiv Detail & Related papers (2023-10-10T10:17:58Z) - Establishing Shared Query Understanding in an Open Multi-Agent System [1.2031796234206138]
We propose a method that allows to develop shared understanding between two agents for the purpose of performing a task that requires cooperation.
Our method focuses on efficiently establishing successful task-oriented communication in an open multi-agent system.
arXiv Detail & Related papers (2023-05-16T11:07:05Z) - AdverSAR: Adversarial Search and Rescue via Multi-Agent Reinforcement
Learning [4.843554492319537]
We propose an algorithm that allows robots to efficiently coordinate their strategies in the presence of adversarial inter-agent communications.
It is assumed that the robots have no prior knowledge of the target locations, and they can interact with only a subset of neighboring robots at any time.
The effectiveness of our approach is demonstrated on a collection of prototype grid-world environments.
arXiv Detail & Related papers (2022-12-20T08:13:29Z) - ToM2C: Target-oriented Multi-agent Communication and Cooperation with
Theory of Mind [18.85252946546942]
Theory of Mind (ToM) builds socially intelligent agents who are able to communicate and cooperate effectively.
We demonstrate the idea in two typical target-oriented multi-agent tasks: cooperative navigation and multi-sensor target coverage.
arXiv Detail & Related papers (2021-10-15T18:29:55Z) - UneVEn: Universal Value Exploration for Multi-Agent Reinforcement
Learning [53.73686229912562]
We propose a novel MARL approach called Universal Value Exploration (UneVEn)
UneVEn learns a set of related tasks simultaneously with a linear decomposition of universal successor features.
Empirical results on a set of exploration games, challenging cooperative predator-prey tasks requiring significant coordination among agents, and StarCraft II micromanagement benchmarks show that UneVEn can solve tasks where other state-of-the-art MARL methods fail.
arXiv Detail & Related papers (2020-10-06T19:08:47Z) - A Cordial Sync: Going Beyond Marginal Policies for Multi-Agent Embodied
Tasks [111.34055449929487]
We introduce the novel task FurnMove in which agents work together to move a piece of furniture through a living room to a goal.
Unlike existing tasks, FurnMove requires agents to coordinate at every timestep.
We identify two challenges when training agents to complete FurnMove: existing decentralized action sampling procedures do not permit expressive joint action policies.
Using SYNC-policies and CORDIAL, our agents achieve a 58% completion rate on FurnMove, an impressive absolute gain of 25 percentage points over competitive decentralized baselines.
arXiv Detail & Related papers (2020-07-09T17:59:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.