Mutual Theory of Mind in Human-AI Collaboration: An Empirical Study with LLM-driven AI Agents in a Real-time Shared Workspace Task
- URL: http://arxiv.org/abs/2409.08811v1
- Date: Fri, 13 Sep 2024 13:19:48 GMT
- Title: Mutual Theory of Mind in Human-AI Collaboration: An Empirical Study with LLM-driven AI Agents in a Real-time Shared Workspace Task
- Authors: Shao Zhang, Xihuai Wang, Wenhao Zhang, Yongshan Chen, Landi Gao, Dakuo Wang, Weinan Zhang, Xinbing Wang, Ying Wen,
- Abstract summary: Theory of Mind (ToM) significantly impacts human collaboration and communication as a crucial capability to understand others.
Mutual Theory of Mind (MToM) arises when AI agents with ToM capability collaborate with humans.
We find that the agent's ToM capability does not significantly impact team performance but enhances human understanding of the agent.
- Score: 56.92961847155029
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Theory of Mind (ToM) significantly impacts human collaboration and communication as a crucial capability to understand others. When AI agents with ToM capability collaborate with humans, Mutual Theory of Mind (MToM) arises in such human-AI teams (HATs). The MToM process, which involves interactive communication and ToM-based strategy adjustment, affects the team's performance and collaboration process. To explore the MToM process, we conducted a mixed-design experiment using a large language model-driven AI agent with ToM and communication modules in a real-time shared-workspace task. We find that the agent's ToM capability does not significantly impact team performance but enhances human understanding of the agent and the feeling of being understood. Most participants in our study believe verbal communication increases human burden, and the results show that bidirectional communication leads to lower HAT performance. We discuss the results' implications for designing AI agents that collaborate with humans in real-time shared workspace tasks.
Related papers
- Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
Decentralized and lifelong-adaptive multi-agent collaborative learning aims to enhance collaboration among multiple agents without a central server.
We propose DeLAMA, a decentralized multi-agent lifelong collaborative learning algorithm with dynamic collaboration graphs.
arXiv Detail & Related papers (2024-03-11T09:21:11Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
We introduce the problem of Large Language Models (LLMs)-based human-agent collaboration for complex task-solving.
We propose a Reinforcement Learning-based Human-Agent Collaboration method, ReHAC.
This approach includes a policy model designed to determine the most opportune stages for human intervention within the task-solving process.
arXiv Detail & Related papers (2024-02-20T11:03:36Z) - MetaAgents: Simulating Interactions of Human Behaviors for LLM-based
Task-oriented Coordination via Collaborative Generative Agents [27.911816995891726]
We introduce collaborative generative agents, endowing LLM-based Agents with consistent behavior patterns and task-solving abilities.
We propose a novel framework that equips collaborative generative agents with human-like reasoning abilities and specialized skills.
Our work provides valuable insights into the role and evolution of Large Language Models in task-oriented social simulations.
arXiv Detail & Related papers (2023-10-10T10:17:58Z) - Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation [52.930183136111864]
We propose using scorable negotiation to evaluate Large Language Models (LLMs)
To reach an agreement, agents must have strong arithmetic, inference, exploration, and planning capabilities.
We provide procedures to create new games and increase games' difficulty to have an evolving benchmark.
arXiv Detail & Related papers (2023-09-29T13:33:06Z) - Building Cooperative Embodied Agents Modularly with Large Language
Models [104.57849816689559]
We address challenging multi-agent cooperation problems with decentralized control, raw sensory observations, costly communication, and multi-objective tasks instantiated in various embodied environments.
We harness the commonsense knowledge, reasoning ability, language comprehension, and text generation prowess of LLMs and seamlessly incorporate them into a cognitive-inspired modular framework.
Our experiments on C-WAH and TDW-MAT demonstrate that CoELA driven by GPT-4 can surpass strong planning-based methods and exhibit emergent effective communication.
arXiv Detail & Related papers (2023-07-05T17:59:27Z) - Improving Grounded Language Understanding in a Collaborative Environment
by Interacting with Agents Through Help Feedback [42.19685958922537]
We argue that human-AI collaboration should be interactive, with humans monitoring the work of AI agents and providing feedback that the agent can understand and utilize.
In this work, we explore these directions using the challenging task defined by the IGLU competition, an interactive grounded language understanding task in a MineCraft-like world.
arXiv Detail & Related papers (2023-04-21T05:37:59Z) - Mutual Theory of Mind for Human-AI Communication [5.969858080492586]
New developments are enabling AI systems to perceive, recognize, and respond with social cues based on humans' explicit or implicit behavioral and verbal cues.
These AI systems are currently serving as matchmakers on dating platforms, assisting student learning as teaching assistants, and enhancing productivity as work partners.
We propose the Mutual Theory of Mind (MToM) framework, inspired by our capability of ToM in human-human communications, to guide this new generation of HAI research.
arXiv Detail & Related papers (2022-10-07T22:46:04Z) - ToM2C: Target-oriented Multi-agent Communication and Cooperation with
Theory of Mind [18.85252946546942]
Theory of Mind (ToM) builds socially intelligent agents who are able to communicate and cooperate effectively.
We demonstrate the idea in two typical target-oriented multi-agent tasks: cooperative navigation and multi-sensor target coverage.
arXiv Detail & Related papers (2021-10-15T18:29:55Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
We propose a novel explainable AI (XAI) framework for achieving human-like communication in human-robot collaborations.
The robot builds a hierarchical mind model of the human user and generates explanations of its own mind as a form of communications.
Results show that the generated explanations of our approach significantly improves the collaboration performance and user perception of the robot.
arXiv Detail & Related papers (2020-07-24T23:35:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.