論文の概要: A Cryogenic Memristive Neural Decoder for Fault-tolerant Quantum Error Correction
- arxiv url: http://arxiv.org/abs/2307.09463v2
- Date: Wed, 30 Oct 2024 20:23:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 16:58:16.524853
- Title: A Cryogenic Memristive Neural Decoder for Fault-tolerant Quantum Error Correction
- Title(参考訳): フォールトトレラント量子誤差補正のための極低温中間型ニューラルデコーダ
- Authors: Victor Yon, Frédéric Marcotte, Pierre-Antoine Mouny, Gebremedhin A. Dagnew, Bohdan Kulchytskyy, Sophie Rochette, Yann Beilliard, Dominique Drouin, Pooya Ronagh,
- Abstract要約: インメモリ・クロスバー(IMC)アーキテクチャに基づくニューラルデコーダの設計と解析を行う。
ハードウェアを意識したリトレーニング手法を開発し、フィデリティ損失を軽減する。
この研究は、フォールトトレラントQECの統合のためのスケーラブルで高速で低消費電力のMCCハードウェアへの経路を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Neural decoders for quantum error correction (QEC) rely on neural networks to classify syndromes extracted from error correction codes and find appropriate recovery operators to protect logical information against errors. Its ability to adapt to hardware noise and long-term drifts make neural decoders a promising candidate for inclusion in a fault-tolerant quantum architecture. However, given their limited scalability, it is prudent that small-scale (local) neural decoders are treated as first stages of multi-stage decoding schemes for fault-tolerant quantum computers with millions of qubits. In this case, minimizing the decoding time to match the stabilization measurements frequency and a tight co-integration with the QPUs is highly desired. Cryogenic realizations of neural decoders can not only improve the performance of higher stage decoders, but they can minimize communication delays, and alleviate wiring bottlenecks. In this work, we design and analyze a neural decoder based on an in-memory computation (IMC) architecture, where crossbar arrays of resistive memory devices are employed to both store the synaptic weights of the neural decoder and perform analog matrix-vector multiplications. In simulations supported by experimental measurements, we investigate the impact of TiOx-based memristive devices' non-idealities on decoding fidelity. We develop hardware-aware re-training methods to mitigate the fidelity loss, restoring the ideal decoder's pseudo-threshold for the distance-3 surface code. This work provides a pathway to scalable, fast, and low-power cryogenic IMC hardware for integrated fault-tolerant QEC.
- Abstract(参考訳): 量子エラー訂正(QEC)のためのニューラルネットワークデコーダは、エラー訂正符号から抽出されたシンドロームを分類し、論理情報をエラーから保護するための適切な回復演算子を見つけるためにニューラルネットワークに依存している。
ハードウェアノイズや長期ドリフトに適応する能力は、ニューラルデコーダをフォールトトレラントな量子アーキテクチャに含めるための有望な候補にする。
しかし、スケーラビリティが限られているため、数百万の量子ビットを持つフォールトトレラント量子コンピュータにおいて、小規模(局所)ニューラルデコーダがマルチステージデコードスキームの第一段階として扱われることには慎重である。
この場合、安定化測定周波数とQPUとの密結合とを一致させる復号時間を最小化することが望まれる。
ニューラルデコーダの低温化は、高段デコーダの性能を向上させるだけでなく、通信遅延を最小限に抑え、配線ボトルネックを軽減することができる。
本研究では,インメモリ計算(IMC)アーキテクチャに基づくニューラルデコーダの設計と解析を行い,ニューラルデコーダのシナプス重みを格納し,アナログ行列ベクトル乗算を行う。
実験によって支援されたシミュレーションでは, TiOxをベースとした旋律素子の非イデオロギーが復号性に与える影響について検討する。
本研究では,距離3面符号に対する理想デコーダの擬似閾値を復元し,不確かさの軽減を図るハードウェア・アウェア・リトレーニング手法を開発した。
この研究は、フォールトトレラントQECの統合のためのスケーラブルで高速で低消費電力のMCCハードウェアへの経路を提供する。
関連論文リスト
- Accelerating Error Correction Code Transformers [56.75773430667148]
本稿では,トランスを用いたデコーダの高速化手法を提案する。
最新のハードウェアでは、90%の圧縮比を実現し、算術演算エネルギー消費を少なくとも224倍削減する。
論文 参考訳(メタデータ) (2024-10-08T11:07:55Z) - A Scalable, Fast and Programmable Neural Decoder for Fault-Tolerant
Quantum Computation Using Surface Codes [12.687083899824314]
量子誤り訂正符号(Quantum error-correcting codes, QECCs)は、量子アルゴリズムの実行の大きな障害である量子ノイズの負の効果を排除できる。
回転曲面符号(RSC)に対するFTQECの要件を満たすスケーラブルで高速でプログラム可能なニューラルデコーディングシステムを提案する。
本システムでは,197 nsのデコード遅延を極端に低くし,その精度はMWPMに近い。
論文 参考訳(メタデータ) (2023-05-25T06:23:32Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
データ効率のよいニューラルデコーダを導入し、この問題の対称性を活用する。
本稿では,従来のニューラルデコーダに比べて精度の高い新しい同変アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-04-14T19:46:39Z) - Modular decoding: parallelizable real-time decoding for quantum
computers [55.41644538483948]
リアルタイム量子計算は、ノイズの多い量子ハードウェアによって生成されたデータのストリームから論理的な結果を取り出すことができる復号アルゴリズムを必要とする。
本稿では,デコーディングの精度を犠牲にすることなく,最小限の追加通信でこの問題に対処できるモジュールデコーディングを提案する。
本稿では,格子探索型耐故障ブロックのモジュールデコーディングの具体例であるエッジ頂点分解について紹介する。
論文 参考訳(メタデータ) (2023-03-08T19:26:10Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
本稿では,スパースビューCBCT再構成のための新規かつ高速な自己教師型ソリューションを提案する。
所望の減衰係数は、3次元空間座標の連続関数として表現され、完全に接続されたディープニューラルネットワークによってパラメータ化される。
ハッシュ符号化を含む学習ベースのエンコーダが採用され、ネットワークが高周波の詳細をキャプチャするのに役立つ。
論文 参考訳(メタデータ) (2022-09-29T04:06:00Z) - NEO-QEC: Neural Network Enhanced Online Superconducting Decoder for
Surface Codes [2.2749157557381245]
本稿では, SCと格子手術 (LS) の動作を, 精度, 高速, 低消費電力デコーダで復号化可能なNN型デコーダを提案する。
単一論理量子ビット保護のための量子誤差シミュレータによるデコーダの性能評価と,最大13個のコードによるLSの最小動作について検討した。
論文 参考訳(メタデータ) (2022-08-11T11:37:09Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
高速かつ高精度なデコーダを導入し、幅広い種類の量子誤り訂正符号で使用することができる。
我々のデコーダは、信仰マッチングと信念フィンドと呼ばれ、すべてのノイズ情報を活用し、QECの高精度なデモを解き放つ。
このデコーダは, 標準の正方形曲面符号に対して, 整形曲面符号において, より高いしきい値と低い量子ビットオーバーヘッドをもたらすことがわかった。
論文 参考訳(メタデータ) (2022-03-09T18:48:54Z) - Scalable Neural Decoder for Topological Surface Codes [0.0]
本稿では,雑音およびシンドローム測定誤差を考慮に入れた安定化符号群に対するニューラルネットワークに基づくデコーダを提案する。
重要なイノベーションは、エラーシンドロームを小さなスケールで自動デコードすることである。
このような前処理によって,実用アプリケーションにおいて最大2桁の誤差率を効果的に削減できることを示す。
論文 参考訳(メタデータ) (2021-01-18T19:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。