A Cryogenic Memristive Neural Decoder for Fault-tolerant Quantum Error Correction
- URL: http://arxiv.org/abs/2307.09463v2
- Date: Wed, 30 Oct 2024 20:23:50 GMT
- Title: A Cryogenic Memristive Neural Decoder for Fault-tolerant Quantum Error Correction
- Authors: Victor Yon, Frédéric Marcotte, Pierre-Antoine Mouny, Gebremedhin A. Dagnew, Bohdan Kulchytskyy, Sophie Rochette, Yann Beilliard, Dominique Drouin, Pooya Ronagh,
- Abstract summary: We design and analyze a neural decoder based on an in-memory crossbar (IMC) architecture.
We develop hardware-aware re-training methods to mitigate the fidelity loss.
This work provides a pathway to scalable, fast, and low-power cryogenic IMC hardware for integrated fault-tolerant QEC.
- Score: 0.0
- License:
- Abstract: Neural decoders for quantum error correction (QEC) rely on neural networks to classify syndromes extracted from error correction codes and find appropriate recovery operators to protect logical information against errors. Its ability to adapt to hardware noise and long-term drifts make neural decoders a promising candidate for inclusion in a fault-tolerant quantum architecture. However, given their limited scalability, it is prudent that small-scale (local) neural decoders are treated as first stages of multi-stage decoding schemes for fault-tolerant quantum computers with millions of qubits. In this case, minimizing the decoding time to match the stabilization measurements frequency and a tight co-integration with the QPUs is highly desired. Cryogenic realizations of neural decoders can not only improve the performance of higher stage decoders, but they can minimize communication delays, and alleviate wiring bottlenecks. In this work, we design and analyze a neural decoder based on an in-memory computation (IMC) architecture, where crossbar arrays of resistive memory devices are employed to both store the synaptic weights of the neural decoder and perform analog matrix-vector multiplications. In simulations supported by experimental measurements, we investigate the impact of TiOx-based memristive devices' non-idealities on decoding fidelity. We develop hardware-aware re-training methods to mitigate the fidelity loss, restoring the ideal decoder's pseudo-threshold for the distance-3 surface code. This work provides a pathway to scalable, fast, and low-power cryogenic IMC hardware for integrated fault-tolerant QEC.
Related papers
- Accelerating Error Correction Code Transformers [56.75773430667148]
We introduce a novel acceleration method for transformer-based decoders.
We achieve a 90% compression ratio and reduce arithmetic operation energy consumption by at least 224 times on modern hardware.
arXiv Detail & Related papers (2024-10-08T11:07:55Z) - A Scalable, Fast and Programmable Neural Decoder for Fault-Tolerant
Quantum Computation Using Surface Codes [12.687083899824314]
Quantum error-correcting codes (QECCs) can eliminate the negative effects of quantum noise, the major obstacle to the execution of quantum algorithms.
We propose a scalable, fast, and programmable neural decoding system to meet the requirements of FTQEC for rotated surface codes (RSC)
Our system achieves an extremely low decoding latency of 197 ns, and the accuracy results of our system are close to minimum weight perfect matching (MWPM)
arXiv Detail & Related papers (2023-05-25T06:23:32Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
We introduce a data efficient neural decoder that exploits the symmetries of the problem.
We propose a novel equivariant architecture that achieves state of the art accuracy compared to previous neural decoders.
arXiv Detail & Related papers (2023-04-14T19:46:39Z) - Modular decoding: parallelizable real-time decoding for quantum
computers [55.41644538483948]
Real-time quantum computation will require decoding algorithms capable of extracting logical outcomes from a stream of data generated by noisy quantum hardware.
We propose modular decoding, an approach capable of addressing this challenge with minimal additional communication and without sacrificing decoding accuracy.
We introduce the edge-vertex decomposition, a concrete instance of modular decoding for lattice-surgery style fault-tolerant blocks.
arXiv Detail & Related papers (2023-03-08T19:26:10Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - NEO-QEC: Neural Network Enhanced Online Superconducting Decoder for
Surface Codes [2.2749157557381245]
We propose an NN-based accurate, fast, and low-power decoder capable of decoding SCs and lattice surgery (LS) operations with measurement errors on ancillary qubits.
We evaluate the decoder performance by a quantum error simulator for the single logical qubit protection and the minimum operation of LS with code up to 13.
arXiv Detail & Related papers (2022-08-11T11:37:09Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Scalable Neural Decoder for Topological Surface Codes [0.0]
We present a neural network based decoder for a family of stabilizer codes subject to noise and syndrome measurement errors.
The key innovation is to autodecode error syndromes on small scales by shifting a preprocessing window over the underlying code.
We show that such a preprocessing step allows to effectively reduce the error rate by up to two orders of magnitude in practical applications.
arXiv Detail & Related papers (2021-01-18T19:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.