Transient Neural Radiance Fields for Lidar View Synthesis and 3D Reconstruction
- URL: http://arxiv.org/abs/2307.09555v2
- Date: Fri, 5 Apr 2024 23:58:40 GMT
- Title: Transient Neural Radiance Fields for Lidar View Synthesis and 3D Reconstruction
- Authors: Anagh Malik, Parsa Mirdehghan, Sotiris Nousias, Kiriakos N. Kutulakos, David B. Lindell,
- Abstract summary: We propose a novel method for rendering transient NeRFs that take as input the raw, time-resolved photon count histograms measured by a single-photon lidar system.
We evaluate our method on a first-of-its-kind dataset of simulated and captured transient multiview scans from a prototype single-photon lidar.
- Score: 12.86184159775286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural radiance fields (NeRFs) have become a ubiquitous tool for modeling scene appearance and geometry from multiview imagery. Recent work has also begun to explore how to use additional supervision from lidar or depth sensor measurements in the NeRF framework. However, previous lidar-supervised NeRFs focus on rendering conventional camera imagery and use lidar-derived point cloud data as auxiliary supervision; thus, they fail to incorporate the underlying image formation model of the lidar. Here, we propose a novel method for rendering transient NeRFs that take as input the raw, time-resolved photon count histograms measured by a single-photon lidar system, and we seek to render such histograms from novel views. Different from conventional NeRFs, the approach relies on a time-resolved version of the volume rendering equation to render the lidar measurements and capture transient light transport phenomena at picosecond timescales. We evaluate our method on a first-of-its-kind dataset of simulated and captured transient multiview scans from a prototype single-photon lidar. Overall, our work brings NeRFs to a new dimension of imaging at transient timescales, newly enabling rendering of transient imagery from novel views. Additionally, we show that our approach recovers improved geometry and conventional appearance compared to point cloud-based supervision when training on few input viewpoints. Transient NeRFs may be especially useful for applications which seek to simulate raw lidar measurements for downstream tasks in autonomous driving, robotics, and remote sensing.
Related papers
- NeRF-Casting: Improved View-Dependent Appearance with Consistent Reflections [57.63028964831785]
Recent works have improved NeRF's ability to render detailed specular appearance of distant environment illumination, but are unable to synthesize consistent reflections of closer content.
We address these issues with an approach based on ray tracing.
Instead of querying an expensive neural network for the outgoing view-dependent radiance at points along each camera ray, our model casts rays from these points and traces them through the NeRF representation to render feature vectors.
arXiv Detail & Related papers (2024-05-23T17:59:57Z) - NeRF-VPT: Learning Novel View Representations with Neural Radiance
Fields via View Prompt Tuning [63.39461847093663]
We propose NeRF-VPT, an innovative method for novel view synthesis to address these challenges.
Our proposed NeRF-VPT employs a cascading view prompt tuning paradigm, wherein RGB information gained from preceding rendering outcomes serves as instructive visual prompts for subsequent rendering stages.
NeRF-VPT only requires sampling RGB data from previous stage renderings as priors at each training stage, without relying on extra guidance or complex techniques.
arXiv Detail & Related papers (2024-03-02T22:08:10Z) - Single-Stage Diffusion NeRF: A Unified Approach to 3D Generation and
Reconstruction [77.69363640021503]
3D-aware image synthesis encompasses a variety of tasks, such as scene generation and novel view synthesis from images.
We present SSDNeRF, a unified approach that employs an expressive diffusion model to learn a generalizable prior of neural radiance fields (NeRF) from multi-view images of diverse objects.
arXiv Detail & Related papers (2023-04-13T17:59:01Z) - NeRF applied to satellite imagery for surface reconstruction [5.027411102165872]
We present Surf-NeRF, a modified implementation of the recently introduced Shadow Neural Radiance Field (S-NeRF) model.
This method is able to synthesize novel views from a sparse set of satellite images of a scene, while accounting for the variation in lighting present in the pictures.
The trained model can also be used to accurately estimate the surface elevation of the scene, which is often a desirable quantity for satellite observation applications.
arXiv Detail & Related papers (2023-04-09T01:37:13Z) - Self-NeRF: A Self-Training Pipeline for Few-Shot Neural Radiance Fields [17.725937326348994]
We propose Self-NeRF, a self-evolved NeRF that iteratively refines the radiance fields with very few number of input views.
In each iteration, we label unseen views with the predicted colors or warped pixels generated by the model from the preceding iteration.
These expanded pseudo-views are afflicted by imprecision in color and warping artifacts, which degrades the performance of NeRF.
arXiv Detail & Related papers (2023-03-10T08:22:36Z) - CLONeR: Camera-Lidar Fusion for Occupancy Grid-aided Neural
Representations [77.90883737693325]
This paper proposes CLONeR, which significantly improves upon NeRF by allowing it to model large outdoor driving scenes observed from sparse input sensor views.
This is achieved by decoupling occupancy and color learning within the NeRF framework into separate Multi-Layer Perceptrons (MLPs) trained using LiDAR and camera data, respectively.
In addition, this paper proposes a novel method to build differentiable 3D Occupancy Grid Maps (OGM) alongside the NeRF model, and leverage this occupancy grid for improved sampling of points along a ray for rendering in metric space.
arXiv Detail & Related papers (2022-09-02T17:44:50Z) - Sat-NeRF: Learning Multi-View Satellite Photogrammetry With Transient
Objects and Shadow Modeling Using RPC Cameras [10.269997499911668]
We introduce the Satellite Neural Radiance Field (Sat-NeRF), a new end-to-end model for learning multi-view satellite photogram in the wild.
Sat-NeRF combines some of the latest trends in neural rendering with native satellite camera models.
We evaluate Sat-NeRF using WorldView-3 images from different locations and stress the advantages of applying a bundle adjustment to the satellite camera models prior to training.
arXiv Detail & Related papers (2022-03-16T19:18:46Z) - RegNeRF: Regularizing Neural Radiance Fields for View Synthesis from
Sparse Inputs [79.00855490550367]
We show that NeRF can produce photorealistic renderings of unseen viewpoints when many input views are available.
We address this by regularizing the geometry and appearance of patches rendered from unobserved viewpoints.
Our model outperforms not only other methods that optimize over a single scene, but also conditional models that are extensively pre-trained on large multi-view datasets.
arXiv Detail & Related papers (2021-12-01T18:59:46Z) - iNeRF: Inverting Neural Radiance Fields for Pose Estimation [68.91325516370013]
We present iNeRF, a framework that performs mesh-free pose estimation by "inverting" a Neural RadianceField (NeRF)
NeRFs have been shown to be remarkably effective for the task of view synthesis.
arXiv Detail & Related papers (2020-12-10T18:36:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.