Self-NeRF: A Self-Training Pipeline for Few-Shot Neural Radiance Fields
- URL: http://arxiv.org/abs/2303.05775v1
- Date: Fri, 10 Mar 2023 08:22:36 GMT
- Title: Self-NeRF: A Self-Training Pipeline for Few-Shot Neural Radiance Fields
- Authors: Jiayang Bai, Letian Huang, Wen Gong, Jie Guo and Yanwen Guo
- Abstract summary: We propose Self-NeRF, a self-evolved NeRF that iteratively refines the radiance fields with very few number of input views.
In each iteration, we label unseen views with the predicted colors or warped pixels generated by the model from the preceding iteration.
These expanded pseudo-views are afflicted by imprecision in color and warping artifacts, which degrades the performance of NeRF.
- Score: 17.725937326348994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Neural Radiance Fields (NeRF) have emerged as a potent method for
synthesizing novel views from a dense set of images. Despite its impressive
performance, NeRF is plagued by its necessity for numerous calibrated views and
its accuracy diminishes significantly in a few-shot setting. To address this
challenge, we propose Self-NeRF, a self-evolved NeRF that iteratively refines
the radiance fields with very few number of input views, without incorporating
additional priors. Basically, we train our model under the supervision of
reference and unseen views simultaneously in an iterative procedure. In each
iteration, we label unseen views with the predicted colors or warped pixels
generated by the model from the preceding iteration. However, these expanded
pseudo-views are afflicted by imprecision in color and warping artifacts, which
degrades the performance of NeRF. To alleviate this issue, we construct an
uncertainty-aware NeRF with specialized embeddings. Some techniques such as
cone entropy regularization are further utilized to leverage the pseudo-views
in the most efficient manner. Through experiments under various settings, we
verified that our Self-NeRF is robust to input with uncertainty and surpasses
existing methods when trained on limited training data.
Related papers
- ExtraNeRF: Visibility-Aware View Extrapolation of Neural Radiance Fields with Diffusion Models [60.48305533224092]
ExtraNeRF is a novel method for extrapolating the range of views handled by a Neural Radiance Field (NeRF)
Our main idea is to leverage NeRFs to model scene-specific, fine-grained details, while capitalizing on diffusion models to extrapolate beyond our observed data.
arXiv Detail & Related papers (2024-06-10T09:44:06Z) - Taming Latent Diffusion Model for Neural Radiance Field Inpainting [63.297262813285265]
Neural Radiance Field (NeRF) is a representation for 3D reconstruction from multi-view images.
We propose tempering the diffusion model'sity with per-scene customization and mitigating the textural shift with masked training.
Our framework yields state-of-the-art NeRF inpainting results on various real-world scenes.
arXiv Detail & Related papers (2024-04-15T17:59:57Z) - Self-Evolving Neural Radiance Fields [31.124406548504794]
We propose a novel framework, dubbed Self-Evolving Neural Radiance Fields (SE-NeRF), that applies a self-training framework to neural radiance field (NeRF)
We formulate few-shot NeRF into a teacher-student framework to guide the network to learn a more robust representation of the scene.
We show and evaluate that applying our self-training framework to existing models improves the quality of the rendered images and achieves state-of-the-art performance in multiple settings.
arXiv Detail & Related papers (2023-12-02T02:28:07Z) - SimpleNeRF: Regularizing Sparse Input Neural Radiance Fields with
Simpler Solutions [6.9980855647933655]
supervising the depth estimated by the NeRF helps train it effectively with fewer views.
We design augmented models that encourage simpler solutions by exploring the role of positional encoding and view-dependent radiance.
We achieve state-of-the-art view-synthesis performance on two popular datasets by employing the above regularizations.
arXiv Detail & Related papers (2023-09-07T18:02:57Z) - Learning a Diffusion Prior for NeRFs [84.99454404653339]
We propose to use a diffusion model to generate NeRFs encoded on a regularized grid.
We show that our model can sample realistic NeRFs, while at the same time allowing conditional generations, given a certain observation as guidance.
arXiv Detail & Related papers (2023-04-27T19:24:21Z) - Clean-NeRF: Reformulating NeRF to account for View-Dependent
Observations [67.54358911994967]
This paper proposes Clean-NeRF for accurate 3D reconstruction and novel view rendering in complex scenes.
Clean-NeRF can be implemented as a plug-in that can immediately benefit existing NeRF-based methods without additional input.
arXiv Detail & Related papers (2023-03-26T12:24:31Z) - FreeNeRF: Improving Few-shot Neural Rendering with Free Frequency
Regularization [32.1581416980828]
We present Frequency regularized NeRF (FreeNeRF), a surprisingly simple baseline that outperforms previous methods.
We analyze the key challenges in few-shot neural rendering and find that frequency plays an important role in NeRF's training.
arXiv Detail & Related papers (2023-03-13T18:59:03Z) - PANeRF: Pseudo-view Augmentation for Improved Neural Radiance Fields
Based on Few-shot Inputs [3.818285175392197]
neural radiance fields (NeRF) have promising applications for novel views of complex scenes.
NeRF requires dense input views, typically numbering in the hundreds, for generating high-quality images.
We propose pseudo-view augmentation of NeRF, a scheme that expands a sufficient amount of data by considering the geometry of few-shot inputs.
arXiv Detail & Related papers (2022-11-23T08:01:10Z) - R2L: Distilling Neural Radiance Field to Neural Light Field for
Efficient Novel View Synthesis [76.07010495581535]
Rendering a single pixel requires querying the Neural Radiance Field network hundreds of times.
NeLF presents a more straightforward representation over NeRF in novel view.
We show the key to successfully learning a deep NeLF network is to have sufficient data.
arXiv Detail & Related papers (2022-03-31T17:57:05Z) - RegNeRF: Regularizing Neural Radiance Fields for View Synthesis from
Sparse Inputs [79.00855490550367]
We show that NeRF can produce photorealistic renderings of unseen viewpoints when many input views are available.
We address this by regularizing the geometry and appearance of patches rendered from unobserved viewpoints.
Our model outperforms not only other methods that optimize over a single scene, but also conditional models that are extensively pre-trained on large multi-view datasets.
arXiv Detail & Related papers (2021-12-01T18:59:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.