Joint Service Caching, Communication and Computing Resource Allocation in Collaborative MEC Systems: A DRL-based Two-timescale Approach
- URL: http://arxiv.org/abs/2307.09691v2
- Date: Fri, 26 Apr 2024 13:56:05 GMT
- Title: Joint Service Caching, Communication and Computing Resource Allocation in Collaborative MEC Systems: A DRL-based Two-timescale Approach
- Authors: Qianqian Liu, Haixia Zhang, Xin Zhang, Dongfeng Yuan,
- Abstract summary: Meeting the strict Quality of Service (QoS) requirements of terminals has imposed a challenge on Multiaccess Edge Computing (MEC) systems.
We propose a collaborative framework that facilitates resource sharing between the edge servers.
We show that our proposed algorithm outperforms the baseline algorithms in terms of the average switching and cache cost.
- Score: 15.16859210403316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Meeting the strict Quality of Service (QoS) requirements of terminals has imposed a signiffcant challenge on Multiaccess Edge Computing (MEC) systems, due to the limited multidimensional resources. To address this challenge, we propose a collaborative MEC framework that facilitates resource sharing between the edge servers, and with the aim to maximize the long-term QoS and reduce the cache switching cost through joint optimization of service caching, collaborative offfoading, and computation and communication resource allocation. The dual timescale feature and temporal recurrence relationship between service caching and other resource allocation make solving the problem even more challenging. To solve it, we propose a deep reinforcement learning (DRL)-based dual timescale scheme, called DGL-DDPG, which is composed of a short-term genetic algorithm (GA) and a long short-term memory network-based deep deterministic policy gradient (LSTM-DDPG). In doing so, we reformulate the optimization problem as a Markov decision process (MDP) where the small-timescale resource allocation decisions generated by an improved GA are taken as the states and input into a centralized LSTM-DDPG agent to generate the service caching decision for the large-timescale. Simulation results demonstrate that our proposed algorithm outperforms the baseline algorithms in terms of the average QoS and cache switching cost.
Related papers
- Two-Timescale Model Caching and Resource Allocation for Edge-Enabled AI-Generated Content Services [55.0337199834612]
Generative AI (GenAI) has emerged as a transformative technology, enabling customized and personalized AI-generated content (AIGC) services.
These services require executing GenAI models with billions of parameters, posing significant obstacles to resource-limited wireless edge.
We introduce the formulation of joint model caching and resource allocation for AIGC services to balance a trade-off between AIGC quality and latency metrics.
arXiv Detail & Related papers (2024-11-03T07:01:13Z) - Adaptive User-Centric Entanglement Routing in Quantum Data Networks [5.421492821020181]
Distributed quantum computing (DQC) holds immense promise in harnessing the potential of quantum computing by interconnecting multiple small quantum computers (QCs) through a quantum data network (QDN)
establishing long-distance quantum entanglement between two QCs for quantum teleportation within the QDN is a critical aspect, and it involves entanglement routing.
Existing approaches have mainly focused on optimizing entanglement performance for current entanglement connection (EC) requests.
We present a novel user-centric entanglement routing problem that spans an extended period to maximize entanglement success rate while adhering to the user's budget constraint.
arXiv Detail & Related papers (2024-04-13T17:20:00Z) - Client Orchestration and Cost-Efficient Joint Optimization for
NOMA-Enabled Hierarchical Federated Learning [55.49099125128281]
We propose a non-orthogonal multiple access (NOMA) enabled HFL system under semi-synchronous cloud model aggregation.
We show that the proposed scheme outperforms the considered benchmarks regarding HFL performance improvement and total cost reduction.
arXiv Detail & Related papers (2023-11-03T13:34:44Z) - Double Deep Q-Learning-based Path Selection and Service Placement for
Latency-Sensitive Beyond 5G Applications [11.864695986880347]
This paper studies the joint problem of communication and computing resource allocation, dubbed CCRA, to minimize total cost.
We formulate the problem as a non-linear programming model and propose two approaches, dubbed B&B-CCRA and WF-CCRA, based on the Branch & Bound and Water-Filling algorithms.
Numerical simulations show that B&B-CCRA optimally solves the problem, whereas WF-CCRA delivers near-optimal solutions in a substantially shorter time.
arXiv Detail & Related papers (2023-09-18T22:17:23Z) - Deep Reinforcement Learning for Uplink Scheduling in NOMA-URLLC Networks [7.182684187774442]
This article addresses the problem of Ultra Reliable Low Communications (URLLC) in wireless networks, a framework with particularly stringent constraints imposed by many Internet of Things (IoT) applications from diverse sectors.
We propose a novel Deep Reinforcement Learning (DRL) scheduling algorithm, to solve the Non-Orthogonal Multiple Access (NOMA) uplink URLLC scheduling problem involving strict deadlines.
arXiv Detail & Related papers (2023-08-28T12:18:02Z) - Elastic Entangled Pair and Qubit Resource Management in Quantum Cloud
Computing [73.7522199491117]
Quantum cloud computing (QCC) offers a promising approach to efficiently provide quantum computing resources.
The fluctuations in user demand and quantum circuit requirements are challenging for efficient resource provisioning.
We propose a resource allocation model to provision quantum computing and networking resources.
arXiv Detail & Related papers (2023-07-25T00:38:46Z) - Decentralized Federated Reinforcement Learning for User-Centric Dynamic
TFDD Control [37.54493447920386]
We propose a learning-based dynamic time-frequency division duplexing (D-TFDD) scheme to meet asymmetric and heterogeneous traffic demands.
We formulate the problem as a decentralized partially observable Markov decision process (Dec-POMDP)
In order to jointly optimize the global resources in a decentralized manner, we propose a federated reinforcement learning (RL) algorithm named Wolpertinger deep deterministic policy gradient (FWDDPG) algorithm.
arXiv Detail & Related papers (2022-11-04T07:39:21Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Reinforcement Learning Based Cooperative Coded Caching under Dynamic
Popularities in Ultra-Dense Networks [38.44125997148742]
caching strategy at small base stations (SBSs) is critical to meet massive high data rate requests.
We exploit reinforcement learning (RL) to design a cooperative caching strategy with maximum-distance separable (MDS) coding.
arXiv Detail & Related papers (2020-03-08T10:45:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.