GlobalMapper: Arbitrary-Shaped Urban Layout Generation
- URL: http://arxiv.org/abs/2307.09693v1
- Date: Wed, 19 Jul 2023 00:36:05 GMT
- Title: GlobalMapper: Arbitrary-Shaped Urban Layout Generation
- Authors: Liu He, Daniel Aliaga
- Abstract summary: A building layout consists of a set of buildings in city blocks defined by a network of roads.
We propose a fully automatic approach to building layout generation using graph attention networks.
Our results, including user study, demonstrate superior performance as compared to prior layout generation networks.
- Score: 1.5076964620370268
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling and designing urban building layouts is of significant interest in
computer vision, computer graphics, and urban applications. A building layout
consists of a set of buildings in city blocks defined by a network of roads. We
observe that building layouts are discrete structures, consisting of multiple
rows of buildings of various shapes, and are amenable to skeletonization for
mapping arbitrary city block shapes to a canonical form. Hence, we propose a
fully automatic approach to building layout generation using graph attention
networks. Our method generates realistic urban layouts given arbitrary road
networks, and enables conditional generation based on learned priors. Our
results, including user study, demonstrate superior performance as compared to
prior layout generation networks, support arbitrary city block and varying
building shapes as demonstrated by generating layouts for 28 large cities.
Related papers
- CityX: Controllable Procedural Content Generation for Unbounded 3D Cities [55.737060358043536]
We propose a novel multi-modal controllable procedural content generation method, named CityX.
It enhances realistic, unbounded 3D city generation guided by multiple layout conditions, including OSM, semantic maps, and satellite images.
Through this effective framework, CityX shows the potential to build an innovative ecosystem for 3D scene generation.
arXiv Detail & Related papers (2024-07-24T18:05:13Z) - Streetscapes: Large-scale Consistent Street View Generation Using Autoregressive Video Diffusion [61.929653153389964]
We present a method for generating Streetscapes-long sequences of views through an on-the-fly synthesized city-scale scene.
Our method can scale to much longer-range camera trajectories, spanning several city blocks, while maintaining visual quality and consistency.
arXiv Detail & Related papers (2024-07-18T17:56:30Z) - COHO: Context-Sensitive City-Scale Hierarchical Urban Layout Generation [1.5745692520785073]
We introduce a novel graph-based masked autoencoder (GMAE) for city-scale urban layout generation.
The method encodes attributed buildings, city blocks, communities and cities into a unified graph structure.
Our approach achieves good realism, semantic consistency, and correctness across the heterogeneous urban styles in 330 US cities.
arXiv Detail & Related papers (2024-07-16T00:49:53Z) - RoBus: A Multimodal Dataset for Controllable Road Networks and Building Layouts Generation [4.322143509436427]
We introduce a multimodal dataset with evaluation metrics for controllable generation of Road networks and Building layouts (RoBus)
RoBus is the first and largest open-source dataset in city generation so far.
We analyze the RoBus dataset statistically and validate the effectiveness against existing road networks and building layouts generation methods.
We design new baselines that incorporate urban characteristics, such as road orientation and building density, in the process of generating road networks and building layouts.
arXiv Detail & Related papers (2024-07-10T16:55:01Z) - CityCraft: A Real Crafter for 3D City Generation [25.7885801163556]
CityCraft is an innovative framework designed to enhance both the diversity and quality of urban scene generation.
Our approach integrates three key stages: initially, a diffusion transformer (DiT) model is deployed to generate diverse and controllable 2D city layouts.
Based on the generated layout and city plan, we utilize the asset retrieval module and Blender for precise asset placement and scene construction.
arXiv Detail & Related papers (2024-06-07T14:49:00Z) - Urban Scene Diffusion through Semantic Occupancy Map [49.20779809250597]
UrbanDiffusion is a 3D diffusion model conditioned on a Bird's-Eye View (BEV) map.
Our model learns the data distribution of scene-level structures within a latent space.
After training on real-world driving datasets, our model can generate a wide range of diverse urban scenes.
arXiv Detail & Related papers (2024-03-18T11:54:35Z) - CityGen: Infinite and Controllable 3D City Layout Generation [26.1563802843242]
CityGen is a novel end-to-end framework for infinite, diverse and controllable 3D city layout generation.
CityGen achieves state-of-the-art (SOTA) performance under FID and KID in generating an infinite and controllable 3D city layout.
arXiv Detail & Related papers (2023-12-03T21:16:37Z) - UrbanBIS: a Large-scale Benchmark for Fine-grained Urban Building
Instance Segmentation [50.52615875873055]
UrbanBIS comprises six real urban scenes, with 2.5 billion points, covering a vast area of 10.78 square kilometers.
UrbanBIS provides semantic-level annotations on a rich set of urban objects, including buildings, vehicles, vegetation, roads, and bridges.
UrbanBIS is the first 3D dataset that introduces fine-grained building sub-categories.
arXiv Detail & Related papers (2023-05-04T08:01:38Z) - GANs for Urban Design [0.0]
The topic investigated in this paper is the application of Generative Adversarial Networks to the design of an urban block.
The research presents a flexible model able to adapt to the morphological characteristics of a city.
arXiv Detail & Related papers (2021-05-04T19:50:24Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
We present a method for numerical taxonomy of urban form derived from biological systematics.
We derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form.
After framing and presenting the method, we test it on two cities - Prague and Amsterdam.
arXiv Detail & Related papers (2021-04-30T12:47:52Z) - House-GAN: Relational Generative Adversarial Networks for
Graph-constrained House Layout Generation [59.86153321871127]
The main idea is to encode the constraint into the graph structure of its relational networks.
We have demonstrated the proposed architecture for a new house layout generation problem.
arXiv Detail & Related papers (2020-03-16T03:16:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.