RoBus: A Multimodal Dataset for Controllable Road Networks and Building Layouts Generation
- URL: http://arxiv.org/abs/2407.07835v1
- Date: Wed, 10 Jul 2024 16:55:01 GMT
- Title: RoBus: A Multimodal Dataset for Controllable Road Networks and Building Layouts Generation
- Authors: Tao Li, Ruihang Li, Huangnan Zheng, Shanding Ye, Shijian Li, Zhijie Pan,
- Abstract summary: We introduce a multimodal dataset with evaluation metrics for controllable generation of Road networks and Building layouts (RoBus)
RoBus is the first and largest open-source dataset in city generation so far.
We analyze the RoBus dataset statistically and validate the effectiveness against existing road networks and building layouts generation methods.
We design new baselines that incorporate urban characteristics, such as road orientation and building density, in the process of generating road networks and building layouts.
- Score: 4.322143509436427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated 3D city generation, focusing on road networks and building layouts, is in high demand for applications in urban design, multimedia games and autonomous driving simulations. The surge of generative AI facilitates designing city layouts based on deep learning models. However, the lack of high-quality datasets and benchmarks hinders the progress of these data-driven methods in generating road networks and building layouts. Furthermore, few studies consider urban characteristics, which generally take graphics as analysis objects and are crucial for practical applications, to control the generative process. To alleviate these problems, we introduce a multimodal dataset with accompanying evaluation metrics for controllable generation of Road networks and Building layouts (RoBus), which is the first and largest open-source dataset in city generation so far. RoBus dataset is formatted as images, graphics and texts, with $72,400$ paired samples that cover around $80,000km^2$ globally. We analyze the RoBus dataset statistically and validate the effectiveness against existing road networks and building layouts generation methods. Additionally, we design new baselines that incorporate urban characteristics, such as road orientation and building density, in the process of generating road networks and building layouts using the RoBus dataset, enhancing the practicality of automated urban design. The RoBus dataset and related codes are published at https://github.com/tourlics/RoBus_Dataset.
Related papers
- ControlCity: A Multimodal Diffusion Model Based Approach for Accurate Geospatial Data Generation and Urban Morphology Analysis [6.600555803960957]
We propose a multi-source geographic data transformation solution, utilizing accessible and complete VGI data to assist in generating urban building footprint data.
We then present ControlCity, a geographic data transformation method based on a multimodal diffusion model.
Experiments across 22 global cities demonstrate that ControlCity successfully simulates real urban building patterns.
arXiv Detail & Related papers (2024-09-25T16:03:33Z) - Comprehensive Dataset for Urban Streetlight Analysis [0.0]
This article includes a comprehensive collection of over 800 high-resolution streetlight images taken systematically from India's major streets.
Each image has been labelled and grouped into directories based on binary class labels, which indicate whether each streetlight is functional or not.
arXiv Detail & Related papers (2024-07-01T09:26:30Z) - RSRD: A Road Surface Reconstruction Dataset and Benchmark for Safe and
Comfortable Autonomous Driving [67.09546127265034]
Road surface reconstruction helps to enhance the analysis and prediction of vehicle responses for motion planning and control systems.
We introduce the Road Surface Reconstruction dataset, a real-world, high-resolution, and high-precision dataset collected with a specialized platform in diverse driving conditions.
It covers common road types containing approximately 16,000 pairs of stereo images, original point clouds, and ground-truth depth/disparity maps.
arXiv Detail & Related papers (2023-10-03T17:59:32Z) - MatrixCity: A Large-scale City Dataset for City-scale Neural Rendering
and Beyond [69.37319723095746]
We build a large-scale, comprehensive, and high-quality synthetic dataset for city-scale neural rendering researches.
We develop a pipeline to easily collect aerial and street city views, accompanied by ground-truth camera poses and a range of additional data modalities.
The resulting pilot dataset, MatrixCity, contains 67k aerial images and 452k street images from two city maps of total size $28km2$.
arXiv Detail & Related papers (2023-09-28T16:06:02Z) - Building3D: An Urban-Scale Dataset and Benchmarks for Learning Roof
Structures from Point Clouds [4.38301148531795]
Existing datasets for 3D modeling mainly focus on common objects such as furniture or cars.
We present a urban-scale dataset consisting of more than 160 thousands buildings along with corresponding point clouds, mesh and wire-frame models, covering 16 cities in Estonia about 998 Km2.
Experimental results indicate that Building3D has challenges of high intra-class variance, data imbalance and large-scale noises.
arXiv Detail & Related papers (2023-07-21T21:38:57Z) - GlobalMapper: Arbitrary-Shaped Urban Layout Generation [1.5076964620370268]
A building layout consists of a set of buildings in city blocks defined by a network of roads.
We propose a fully automatic approach to building layout generation using graph attention networks.
Our results, including user study, demonstrate superior performance as compared to prior layout generation networks.
arXiv Detail & Related papers (2023-07-19T00:36:05Z) - Semi-supervised Learning from Street-View Images and OpenStreetMap for
Automatic Building Height Estimation [59.6553058160943]
We propose a semi-supervised learning (SSL) method of automatically estimating building height from Mapillary SVI and OpenStreetMap data.
The proposed method leads to a clear performance boosting in estimating building heights with a Mean Absolute Error (MAE) around 2.1 meters.
The preliminary result is promising and motivates our future work in scaling up the proposed method based on low-cost VGI data.
arXiv Detail & Related papers (2023-07-05T18:16:30Z) - RoMe: Towards Large Scale Road Surface Reconstruction via Mesh Representation [9.622389166012741]
RoMe is a novel framework designed for the robust reconstruction of large-scale road surfaces.
Our evaluations underscore RoMe's superiority in terms of speed, accuracy, and robustness.
RoMe's capability extends beyond mere reconstruction, offering significant value for autolabeling tasks in autonomous driving applications.
arXiv Detail & Related papers (2023-06-20T08:16:25Z) - Dataset of Pathloss and ToA Radio Maps With Localization Application [59.11388233415274]
The datasets include simulated pathloss/received signal strength ( RSS) and time of arrival ( ToA) radio maps over a large collection of realistic dense urban setting in real city maps.
The two main applications of the presented dataset are 1) learning methods that predict the pathloss from input city maps, and, 2) wireless localization.
The fact that the RSS and ToA maps are computed by the same simulations over the same city maps allows for a fair comparison of the RSS and ToA-based localization methods.
arXiv Detail & Related papers (2022-11-18T20:39:51Z) - IDD-3D: Indian Driving Dataset for 3D Unstructured Road Scenes [79.18349050238413]
Preparation and training of deploy-able deep learning architectures require the models to be suited to different traffic scenarios.
An unstructured and complex driving layout found in several developing countries such as India poses a challenge to these models.
We build a new dataset, IDD-3D, which consists of multi-modal data from multiple cameras and LiDAR sensors with 12k annotated driving LiDAR frames.
arXiv Detail & Related papers (2022-10-23T23:03:17Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.