論文の概要: Online Continual Learning for Robust Indoor Object Recognition
- arxiv url: http://arxiv.org/abs/2307.09827v1
- Date: Wed, 19 Jul 2023 08:32:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-20 14:45:35.547639
- Title: Online Continual Learning for Robust Indoor Object Recognition
- Title(参考訳): 頑健な室内物体認識のためのオンライン連続学習
- Authors: Umberto Michieli, Mete Ozay
- Abstract要約: ホームロボットに搭載された視覚システムは、環境の変化の中で見えないクラスと対話する必要がある。
本稿では,高次統計モーメントを演算するリッチな特徴空間を構成するRobOCLeを提案する。
異なるモーメントにより、RobOCLeは変形の異なる特性を捉えることができ、推論速度を低下させることなく高いロバスト性が得られることを示す。
- 参考スコア(独自算出の注目度): 24.316047317028143
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision systems mounted on home robots need to interact with unseen classes in
changing environments. Robots have limited computational resources, labelled
data and storage capability. These requirements pose some unique challenges:
models should adapt without forgetting past knowledge in a data- and
parameter-efficient way. We characterize the problem as few-shot (FS) online
continual learning (OCL), where robotic agents learn from a non-repeated stream
of few-shot data updating only a few model parameters. Additionally, such
models experience variable conditions at test time, where objects may appear in
different poses (e.g., horizontal or vertical) and environments (e.g., day or
night). To improve robustness of CL agents, we propose RobOCLe, which; 1)
constructs an enriched feature space computing high order statistical moments
from the embedded features of samples; and 2) computes similarity between high
order statistics of the samples on the enriched feature space, and predicts
their class labels. We evaluate robustness of CL models to train/test
augmentations in various cases. We show that different moments allow RobOCLe to
capture different properties of deformations, providing higher robustness with
no decrease of inference speed.
- Abstract(参考訳): ホームロボットに搭載された視覚システムは、環境の変化の中で見えないクラスと対話する必要がある。
ロボットには限られた計算資源、ラベル付きデータ、ストレージ能力がある。
モデルは過去の知識を忘れずに、データとパラメータ効率のよい方法で適応すべきである。
ロボットエージェントが、数枚のモデルパラメータだけを更新する非反復的なデータストリームから学習する。
さらに、これらのモデルでは、オブジェクトが異なるポーズ(例えば、水平または垂直)と環境(例えば、昼や夜)に現れる、テスト時に変動条件を経験する。
CLエージェントのロバスト性を改善するため,RobOCLeを提案する。
1) サンプルの埋め込み特徴から高次統計モーメントを演算する豊富な特徴空間を構築する。
2) 拡張特徴空間上のサンプルの高次統計値の類似性を計算し,それらのクラスラベルを予測する。
各種ケースにおいて,CLモデルのトレーニング/テスト強化に対する堅牢性を評価する。
異なるモーメントにより、RobOCLeは変形の異なる特性を捉えることができ、推論速度を低下させることなく高いロバスト性が得られることを示す。
関連論文リスト
- Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning [113.89327264634984]
FSCIL(Few-shot class-incremental Learning)は、最小限のトレーニングサンプルを持つモデルに新しいクラスを統合するという課題に直面している。
従来の手法では、固定パラメータ空間に依存する静的適応を広く採用し、逐次到着するデータから学習する。
本稿では、動的適応のための中間特徴に基づいてプロジェクションパラメータを動的に調整する2つの選択型SSMプロジェクタを提案する。
論文 参考訳(メタデータ) (2024-07-08T17:09:39Z) - BEHAVIOR Vision Suite: Customizable Dataset Generation via Simulation [57.40024206484446]
我々は、コンピュータビジョンモデルの体系的評価のために、完全にカスタマイズされた合成データを生成するためのツールと資産のセットであるBEHAVIOR Vision Suite(BVS)を紹介する。
BVSはシーンレベルで多数の調整可能なパラメータをサポートする。
アプリケーションシナリオを3つ紹介する。
論文 参考訳(メタデータ) (2024-05-15T17:57:56Z) - Towards Plastic and Stable Exemplar-Free Incremental Learning: A Dual-Learner Framework with Cumulative Parameter Averaging [12.168402195820649]
In this proposed a Dual-Learner framework with Cumulative。
平均化(DLCPA)
DLCPA は Task-IL と Class-IL の両方の設定において,最先端の既定ベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-10-28T08:48:44Z) - Explainable Lifelong Stream Learning Based on "Glocal" Pairwise Fusion [17.11983414681928]
リアルタイムデバイス上での連続学習アプリケーションは、携帯電話、消費者向けロボット、スマートアプライアンスで使用されている。
本研究では,いくつかの重要な特徴を取り入れたExplainable Lifelong Learning(ExLL)モデルを提案する。
ExLLはテストシナリオの大部分において、正確性のためにすべてのアルゴリズムを上回ります。
論文 参考訳(メタデータ) (2023-06-23T09:54:48Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
拡散値関数(DVF)と呼ばれる単純なアルゴリズムを提案する。
拡散モデルを用いて環境-ロボット相互作用の連成多段階モデルを学ぶ。
本稿では,DVFを用いて複数のコントローラの状態を効率よく把握する方法を示す。
論文 参考訳(メタデータ) (2023-06-09T18:40:55Z) - RT-1: Robotics Transformer for Real-World Control at Scale [98.09428483862165]
我々は,有望なスケーラブルなモデル特性を示す,ロボティクストランスフォーマーと呼ばれるモデルクラスを提示する。
実世界の課題を遂行する実ロボットの大規模データ収集に基づいて,様々なモデルクラスと,データサイズ,モデルサイズ,データの多様性の関数として一般化する能力について検証した。
論文 参考訳(メタデータ) (2022-12-13T18:55:15Z) - Incremental Online Learning Algorithms Comparison for Gesture and Visual
Smart Sensors [68.8204255655161]
本稿では,加速度センサデータに基づくジェスチャー認識と画像分類の2つの実例として,最先端の4つのアルゴリズムを比較した。
以上の結果から,これらのシステムの信頼性と小型メモリMCUへのデプロイの可能性が確認された。
論文 参考訳(メタデータ) (2022-09-01T17:05:20Z) - Model Stability with Continuous Data Updates [2.439909645714735]
機械学習(ML)モデルの「安定性」を,大規模で複雑なNLPシステムのコンテキスト内で研究する。
ネットワークアーキテクチャや入力表現を含むモデル設計の選択は、安定性に重大な影響を与える。
モデリングの選択を行う際に、MLモデルデザイナが正確さとジッタのトレードオフを考慮に入れることを推奨する。
論文 参考訳(メタデータ) (2022-01-14T22:11:16Z) - Evaluating CLIP: Towards Characterization of Broader Capabilities and
Downstream Implications [8.15254368157658]
私たちはCLIPを分析し、そのようなモデルがもたらす課題をいくつか強調します。
CLIPは、従来のコンピュータビジョンシステムに見られるバイアスを継承できる。
これらの結果は、成長する仕事の体に「ベター」モデルの概念を変えることを要求する証拠となる。
論文 参考訳(メタデータ) (2021-08-05T19:05:57Z) - Evolving Metric Learning for Incremental and Decremental Features [45.696514400861275]
インクリメンタルおよびデクリメンタル機能のための新しいオンラインEvolving Metric Learningモデルを開発した。
我々のモデルはスムーズなワッサーシュタイン距離を組み込むことで、インスタンスと特徴の進化を同時に扱うことができる。
ワンショットケースでの課題に対処するだけでなく、モデルをマルチショットシナリオに拡張します。
論文 参考訳(メタデータ) (2020-06-27T10:29:38Z) - Dynamic Federated Learning [57.14673504239551]
フェデレートラーニング(Federated Learning)は、マルチエージェント環境における集中的なコーディネーション戦略の包括的用語として登場した。
我々は、各イテレーションにおいて、利用可能なエージェントのランダムなサブセットがそのデータに基づいてローカル更新を実行する、フェデレートされた学習モデルを考える。
集約最適化問題に対する真の最小化器上の非定常ランダムウォークモデルの下で、アーキテクチャの性能は、各エージェントにおけるデータ変動率、各エージェントにおけるモデル変動率、アルゴリズムの学習率に逆比例する追跡項の3つの要因によって決定されることを示す。
論文 参考訳(メタデータ) (2020-02-20T15:00:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。