Reinforcement Learning for Credit Index Option Hedging
- URL: http://arxiv.org/abs/2307.09844v1
- Date: Wed, 19 Jul 2023 09:03:41 GMT
- Title: Reinforcement Learning for Credit Index Option Hedging
- Authors: Francesco Mandelli, Marco Pinciroli, Michele Trapletti, Edoardo
Vittori
- Abstract summary: In this paper, we focus on finding the optimal hedging strategy of a credit index option using reinforcement learning.
We take a practical approach, where the focus is on realism i.e. discrete time, transaction costs; even testing our policy on real market data.
- Score: 2.568904868787359
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we focus on finding the optimal hedging strategy of a credit
index option using reinforcement learning. We take a practical approach, where
the focus is on realism i.e. discrete time, transaction costs; even testing our
policy on real market data. We apply a state of the art algorithm, the Trust
Region Volatility Optimization (TRVO) algorithm and show that the derived
hedging strategy outperforms the practitioner's Black & Scholes delta hedge.
Related papers
- Deep Reinforcement Learning for Online Optimal Execution Strategies [49.1574468325115]
This paper tackles the challenge of learning non-Markovian optimal execution strategies in dynamic financial markets.
We introduce a novel actor-critic algorithm based on Deep Deterministic Policy Gradient (DDPG)
We show that our algorithm successfully approximates the optimal execution strategy.
arXiv Detail & Related papers (2024-10-17T12:38:08Z) - Robust Utility Optimization via a GAN Approach [3.74142789780782]
We propose a generative adversarial network (GAN) approach to solve robust utility optimization problems.
In particular, we model both the investor and the market by neural networks (NN) and train them in a mini-max zero-sum game.
arXiv Detail & Related papers (2024-03-22T14:36:39Z) - Asset Allocation: From Markowitz to Deep Reinforcement Learning [2.0305676256390934]
Asset allocation is an investment strategy that aims to balance risk and reward by constantly redistributing the portfolio's assets.
We conduct an extensive benchmark study to determine the efficacy and reliability of a number of optimization techniques.
arXiv Detail & Related papers (2022-07-14T14:44:04Z) - Off-policy Reinforcement Learning with Optimistic Exploration and
Distribution Correction [73.77593805292194]
We train a separate exploration policy to maximize an approximate upper confidence bound of the critics in an off-policy actor-critic framework.
To mitigate the off-policy-ness, we adapt the recently introduced DICE framework to learn a distribution correction ratio for off-policy actor-critic training.
arXiv Detail & Related papers (2021-10-22T22:07:51Z) - Provably Correct Optimization and Exploration with Non-linear Policies [65.60853260886516]
ENIAC is an actor-critic method that allows non-linear function approximation in the critic.
We show that under certain assumptions, the learner finds a near-optimal policy in $O(poly(d))$ exploration rounds.
We empirically evaluate this adaptation and show that it outperforms priors inspired by linear methods.
arXiv Detail & Related papers (2021-03-22T03:16:33Z) - Provably Efficient Algorithms for Multi-Objective Competitive RL [54.22598924633369]
We study multi-objective reinforcement learning (RL) where an agent's reward is represented as a vector.
In settings where an agent competes against opponents, its performance is measured by the distance of its average return vector to a target set.
We develop statistically and computationally efficient algorithms to approach the associated target set.
arXiv Detail & Related papers (2021-02-05T14:26:00Z) - Universal Trading for Order Execution with Oracle Policy Distillation [99.57416828489568]
We propose a novel universal trading policy optimization framework to bridge the gap between the noisy yet imperfect market states and the optimal action sequences for order execution.
We show that our framework can better guide the learning of the common policy towards practically optimal execution by an oracle teacher with perfect information.
arXiv Detail & Related papers (2021-01-28T05:52:18Z) - Learning Strategies in Decentralized Matching Markets under Uncertain
Preferences [91.3755431537592]
We study the problem of decision-making in the setting of a scarcity of shared resources when the preferences of agents are unknown a priori.
Our approach is based on the representation of preferences in a reproducing kernel Hilbert space.
We derive optimal strategies that maximize agents' expected payoffs.
arXiv Detail & Related papers (2020-10-29T03:08:22Z) - Time your hedge with Deep Reinforcement Learning [0.0]
Deep Reinforcement Learning (DRL) can tackle this challenge by creating a dynamic dependency between market information and hedging strategies allocation decisions.
We present a realistic and augmented DRL framework that: (i) uses additional contextual information to decide an action, (ii) has a one period lag between observations and actions to account for one day lag turnover of common asset managers to rebalance their hedge, (iii) is fully tested in terms of stability and robustness thanks to a repetitive train test method called anchored walk forward training, similar in spirit to k fold cross validation for time series and (iv) allows managing leverage of our hedging
arXiv Detail & Related papers (2020-09-16T06:43:41Z) - Deep Deterministic Portfolio Optimization [0.0]
This work is to test reinforcement learning algorithms on conceptually simple, but mathematically non-trivial, trading environments.
We study the deep deterministic policy gradient algorithm and show that such a reinforcement learning agent can successfully recover the essential features of the optimal trading strategies.
arXiv Detail & Related papers (2020-03-13T22:20:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.