Robust Utility Optimization via a GAN Approach
- URL: http://arxiv.org/abs/2403.15243v1
- Date: Fri, 22 Mar 2024 14:36:39 GMT
- Title: Robust Utility Optimization via a GAN Approach
- Authors: Florian Krach, Josef Teichmann, Hanna Wutte,
- Abstract summary: We propose a generative adversarial network (GAN) approach to solve robust utility optimization problems.
In particular, we model both the investor and the market by neural networks (NN) and train them in a mini-max zero-sum game.
- Score: 3.74142789780782
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Robust utility optimization enables an investor to deal with market uncertainty in a structured way, with the goal of maximizing the worst-case outcome. In this work, we propose a generative adversarial network (GAN) approach to (approximately) solve robust utility optimization problems in general and realistic settings. In particular, we model both the investor and the market by neural networks (NN) and train them in a mini-max zero-sum game. This approach is applicable for any continuous utility function and in realistic market settings with trading costs, where only observable information of the market can be used. A large empirical study shows the versatile usability of our method. Whenever an optimal reference strategy is available, our method performs on par with it and in the (many) settings without known optimal strategy, our method outperforms all other reference strategies. Moreover, we can conclude from our study that the trained path-dependent strategies do not outperform Markovian ones. Lastly, we uncover that our generative approach for learning optimal, (non-) robust investments under trading costs generates universally applicable alternatives to well known asymptotic strategies of idealized settings.
Related papers
- SMART: Self-learning Meta-strategy Agent for Reasoning Tasks [44.45037694899524]
We introduce SMART (Self-learning Meta-strategy Agent for Reasoning Tasks), a novel framework that enables LMs to learn and select the most effective strategies for various reasoning tasks.
We model the strategy selection process as a Markov Decision Process and leverage reinforcement learning-driven continuous self-improvement.
Our experiments demonstrate that SMART significantly enhances the ability of models to choose optimal strategies without external guidance.
arXiv Detail & Related papers (2024-10-21T15:55:04Z) - Deep Reinforcement Learning for Online Optimal Execution Strategies [49.1574468325115]
This paper tackles the challenge of learning non-Markovian optimal execution strategies in dynamic financial markets.
We introduce a novel actor-critic algorithm based on Deep Deterministic Policy Gradient (DDPG)
We show that our algorithm successfully approximates the optimal execution strategy.
arXiv Detail & Related papers (2024-10-17T12:38:08Z) - Statistical arbitrage in multi-pair trading strategy based on graph clustering algorithms in US equities market [0.0]
The study seeks to develop an effective strategy based on the novel framework of statistical arbitrage based on graph clustering algorithms.
The study seeks to provide an integrated approach to optimal signal detection and risk management.
arXiv Detail & Related papers (2024-06-15T17:25:32Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Reinforcement Learning for Credit Index Option Hedging [2.568904868787359]
In this paper, we focus on finding the optimal hedging strategy of a credit index option using reinforcement learning.
We take a practical approach, where the focus is on realism i.e. discrete time, transaction costs; even testing our policy on real market data.
arXiv Detail & Related papers (2023-07-19T09:03:41Z) - Asset Allocation: From Markowitz to Deep Reinforcement Learning [2.0305676256390934]
Asset allocation is an investment strategy that aims to balance risk and reward by constantly redistributing the portfolio's assets.
We conduct an extensive benchmark study to determine the efficacy and reliability of a number of optimization techniques.
arXiv Detail & Related papers (2022-07-14T14:44:04Z) - Understanding the Effect of Stochasticity in Policy Optimization [86.7574122154668]
We show that the preferability of optimization methods depends critically on whether exact gradients are used.
Second, to explain these findings we introduce the concept of committal rate for policy optimization.
Third, we show that in the absence of external oracle information, there is an inherent trade-off between exploiting geometry to accelerate convergence versus achieving optimality almost surely.
arXiv Detail & Related papers (2021-10-29T06:35:44Z) - Universal Trading for Order Execution with Oracle Policy Distillation [99.57416828489568]
We propose a novel universal trading policy optimization framework to bridge the gap between the noisy yet imperfect market states and the optimal action sequences for order execution.
We show that our framework can better guide the learning of the common policy towards practically optimal execution by an oracle teacher with perfect information.
arXiv Detail & Related papers (2021-01-28T05:52:18Z) - Deep Deterministic Portfolio Optimization [0.0]
This work is to test reinforcement learning algorithms on conceptually simple, but mathematically non-trivial, trading environments.
We study the deep deterministic policy gradient algorithm and show that such a reinforcement learning agent can successfully recover the essential features of the optimal trading strategies.
arXiv Detail & Related papers (2020-03-13T22:20:21Z) - Mixed Strategies for Robust Optimization of Unknown Objectives [93.8672371143881]
We consider robust optimization problems, where the goal is to optimize an unknown objective function against the worst-case realization of an uncertain parameter.
We design a novel sample-efficient algorithm GP-MRO, which sequentially learns about the unknown objective from noisy point evaluations.
GP-MRO seeks to discover a robust and randomized mixed strategy, that maximizes the worst-case expected objective value.
arXiv Detail & Related papers (2020-02-28T09:28:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.