Hyperbolic non-Abelian semimetal
- URL: http://arxiv.org/abs/2307.09876v2
- Date: Sun, 14 Jul 2024 11:23:25 GMT
- Title: Hyperbolic non-Abelian semimetal
- Authors: Tarun Tummuru, Anffany Chen, Patrick M. Lenggenhager, Titus Neupert, Joseph Maciejko, Tomáš Bzdušek,
- Abstract summary: We extend the notion of topologically protected semi-metallic band crossings to hyperbolic lattices in a negatively curved plane.
Because of their distinct translation group structure, such lattices are associated with a high-dimensional reciprocal space.
We illuminate a nodal manifold of codimension five in the reciprocal space.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We extend the notion of topologically protected semi-metallic band crossings to hyperbolic lattices in a negatively curved plane. Because of their distinct translation group structure, such lattices are associated with a high-dimensional reciprocal space. In addition, they support non-Abelian Bloch states which, unlike conventional Bloch states, acquire a matrix-valued Bloch factor under lattice translations. Combining diverse numerical and analytical approaches, we uncover an unconventional scaling in the density of states at low energies, and illuminate a nodal manifold of codimension five in the reciprocal space. The nodal manifold is topologically protected by a nonzero second Chern number, reminiscent of the characterization of Weyl nodes by the first Chern number.
Related papers
- One-dimensional $\mathbb{Z}$-classified topological crystalline insulator under space-time inversion symmetry [0.6144680854063939]
We classify one-dimensional (1D) topological crystalline insulators by $mathbbZ$ invariants under space-time inversion symmetry.
This finding stands in marked contrast to the conventional classification of 1D band topology protected by inversion symmetry.
We propose to experimentally discern band topology through relative polarization of edge states or bulk states.
arXiv Detail & Related papers (2024-11-01T02:52:50Z) - Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Non-Abelian hyperbolic band theory from supercells [0.0]
hyperbolic lattices support non-Abelian Bloch states that have so far analytical treatments.
By adapting the solid-state-physics notions of supercells and zone folding, we devise a method for the systematic construction of non-Abelian Bloch states.
arXiv Detail & Related papers (2023-05-08T18:00:01Z) - Continuous percolation in a Hilbert space for a large system of qubits [58.720142291102135]
The percolation transition is defined through the appearance of the infinite cluster.
We show that the exponentially increasing dimensionality of the Hilbert space makes its covering by finite-size hyperspheres inefficient.
Our approach to the percolation transition in compact metric spaces may prove useful for its rigorous treatment in other contexts.
arXiv Detail & Related papers (2022-10-15T13:53:21Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Illuminating the bulk-boundary correspondence of a non-Hermitian stub
lattice with Majorana stars [0.0]
We analyze the topological phases of a nonreciprocal hopping model on the stub lattice.
The parity of the total azimuthal winding of the entire Majorana constellation correctly predicts the appearance of edge states between the bulk gaps.
arXiv Detail & Related papers (2021-08-27T16:09:27Z) - Spectrum of localized states in fermionic chains with defect and
adiabatic charge pumping [68.8204255655161]
We study the localized states of a generic quadratic fermionic chain with finite-range couplings.
We analyze the robustness of the connection between bands against perturbations of the Hamiltonian.
arXiv Detail & Related papers (2021-07-20T18:44:06Z) - Scaling limits of lattice quantum fields by wavelets [62.997667081978825]
The renormalization group is considered as an inductive system of scaling maps between lattice field algebras.
We show that the inductive limit of free lattice ground states exists and the limit state extends to the familiar massive continuum free field.
arXiv Detail & Related papers (2020-10-21T16:30:06Z) - Hyperbolic band theory [0.0]
We construct the first hyperbolic generalization of Bloch theory, despite the absence of commutative translation symmetries.
For a quantum particle propagating in a hyperbolic lattice potential, we construct a continuous family of eigenstates that acquire Bloch-like phase factors under a discrete but noncommutative group of hyperbolic translations.
arXiv Detail & Related papers (2020-08-12T18:00:11Z) - Fate of fractional quantum Hall states in open quantum systems:
characterization of correlated topological states for the full Liouvillian [0.0]
We introduce the pseudo-spin Chern number of the Liouvillian which is computed by twisting the boundary conditions only for one of the subspaces of the doubled Hilbert space.
The existence of such a topological invariant elucidates that the topological properties remain unchanged even in the presence of the jump term.
arXiv Detail & Related papers (2020-05-26T11:34:00Z) - Radiative topological biphoton states in modulated qubit arrays [105.54048699217668]
We study topological properties of bound pairs of photons in spatially-modulated qubit arrays coupled to a waveguide.
For open boundary condition, we find exotic topological bound-pair edge states with radiative losses.
By joining two structures with different spatial modulations, we find long-lived interface states which may have applications in storage and quantum information processing.
arXiv Detail & Related papers (2020-02-24T04:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.