Topological nature of edge states for one-dimensional systems without symmetry protection
- URL: http://arxiv.org/abs/2412.10526v1
- Date: Fri, 13 Dec 2024 19:44:54 GMT
- Title: Topological nature of edge states for one-dimensional systems without symmetry protection
- Authors: Janet Zhong, Heming Wang, Alexander N Poddubny, Shanhui Fan,
- Abstract summary: We numerically verify and analytically prove a winding number invariant that correctly predicts the number of edge states in one-dimensional, nearest-neighbour (between unit cells)
Our invariant is invariant under unitary and similarity transforms.
- Score: 46.87902365052209
- License:
- Abstract: We numerically verify and analytically prove a winding number invariant that correctly predicts the number of edge states in one-dimensional, nearest-neighbour (between unit cells), two-band models with any complex couplings and open boundaries. Our winding number uses analytical continuation of the wave-vector into the complex plane and involves two special points on the full Riemann surface band structure that correspond to bulk eigenvector degeneracies. Our invariant is invariant under unitary and similarity transforms. We emphasize that the topological criteria we propose here differ from what is traditionally defined as a topological or trivial phase in symmetryprotected classification studies. It is a broader invariant for our toy model that applies to non-zero energy edge states and its transition does not coincide with the gap closing condition. When the relevant symmetries are applied, our invariant reduces to well-known Hermitian and non-Hermitian symmetry-protected topological invariants.
Related papers
- A non-semisimple non-invertible symmetry [0.5932505549359508]
We investigate the action of a non-semisimple, non-invertible symmetry on spin chains.
We find a model where a product state and the so-called W state spontaneously break the symmetry.
arXiv Detail & Related papers (2024-12-27T13:27:24Z) - Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Relative Representations: Topological and Geometric Perspectives [53.88896255693922]
Relative representations are an established approach to zero-shot model stitching.
We introduce a normalization procedure in the relative transformation, resulting in invariance to non-isotropic rescalings and permutations.
Second, we propose to deploy topological densification when fine-tuning relative representations, a topological regularization loss encouraging clustering within classes.
arXiv Detail & Related papers (2024-09-17T08:09:22Z) - Symmetry-restricted quantum circuits are still well-behaved [45.89137831674385]
We show that quantum circuits restricted by a symmetry inherit the properties of the whole special unitary group $SU(2n)$.
It extends prior work on symmetric states to the operators and shows that the operator space follows the same structure as the state space.
arXiv Detail & Related papers (2024-02-26T06:23:39Z) - Topological characterization of special edge modes from the winding of
relative phase [0.0]
Inversion or chiral symmetry broken SSH model is an example of a system where one-sided edge state with finite energy appears at one end of the open chain.
We introduce a concept of relative phase between the components of a two-component spinor and define a winding number by the change of this relative phase over the one-dimensional Brillouin zone.
We extend this analysis to a two dimensional case where we characterize the non-trivial phase, hosting gapped one-sided edge mode, by the winding in relative phase only along a certain axis in the Brillouin zone.
arXiv Detail & Related papers (2023-06-13T19:43:04Z) - Topological Invariant for Multi-Band Non-hermitian Systems with Chiral
Symmetry [1.1172382217477128]
A one-dimensional topological invariant defined on a generalized Brillion zone(GBZ) was recently found to successfully describe the topological property of the two-band Su-Schrieffer-Heeger model.
We show in this letter by exact proof and detailed demonstration that to acquire the topological invariant for multi-band non-hermitian models with chiral symmetry, the GBZ as the integral domain should be replaced by a more generalized closed loop.
arXiv Detail & Related papers (2023-03-09T06:07:59Z) - Non-local order parameters for fermion chains via the partial transpose [0.0]
This paper takes up proposals for non-local order parameters defined through anti-unitary symmetries.
For matrix product states, an interpretation of these invariants is provided.
arXiv Detail & Related papers (2022-06-07T13:13:59Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Boundary theories of critical matchgate tensor networks [59.433172590351234]
Key aspects of the AdS/CFT correspondence can be captured in terms of tensor network models on hyperbolic lattices.
For tensors fulfilling the matchgate constraint, these have previously been shown to produce disordered boundary states.
We show that these Hamiltonians exhibit multi-scale quasiperiodic symmetries captured by an analytical toy model.
arXiv Detail & Related papers (2021-10-06T18:00:03Z) - Deformed Symmetry Structures and Quantum Many-body Scar Subspaces [12.416248333306237]
A quantum many-body scar system usually contains a special non-thermal subspace decoupled from the rest of the Hilbert space.
We propose a general structure called deformed symmetric spaces for the decoupled subspaces hosting quantum many-body scars.
arXiv Detail & Related papers (2021-08-17T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.