Symmetric Equilibrium Learning of VAEs
- URL: http://arxiv.org/abs/2307.09883v2
- Date: Tue, 12 Mar 2024 12:20:37 GMT
- Title: Symmetric Equilibrium Learning of VAEs
- Authors: Boris Flach and Dmitrij Schlesinger and Alexander Shekhovtsov
- Abstract summary: We view variational autoencoders (VAEs) as decoder-encoder pairs, which map distributions in the data space to distributions in the latent space and vice versa.
We propose a Nash equilibrium learning approach, which is symmetric with respect to the encoder and decoder and allows learning VAEs in situations where both the data and the latent distributions are accessible only by sampling.
- Score: 56.56929742714685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We view variational autoencoders (VAE) as decoder-encoder pairs, which map
distributions in the data space to distributions in the latent space and vice
versa. The standard learning approach for VAEs is the maximisation of the
evidence lower bound (ELBO). It is asymmetric in that it aims at learning a
latent variable model while using the encoder as an auxiliary means only.
Moreover, it requires a closed form a-priori latent distribution. This limits
its applicability in more complex scenarios, such as general semi-supervised
learning and employing complex generative models as priors. We propose a Nash
equilibrium learning approach, which is symmetric with respect to the encoder
and decoder and allows learning VAEs in situations where both the data and the
latent distributions are accessible only by sampling. The flexibility and
simplicity of this approach allows its application to a wide range of learning
scenarios and downstream tasks.
Related papers
- SimPro: A Simple Probabilistic Framework Towards Realistic Long-Tailed Semi-Supervised Learning [49.94607673097326]
We propose a highly adaptable framework, designated as SimPro, which does not rely on any predefined assumptions about the distribution of unlabeled data.
Our framework, grounded in a probabilistic model, innovatively refines the expectation-maximization algorithm.
Our method showcases consistent state-of-the-art performance across diverse benchmarks and data distribution scenarios.
arXiv Detail & Related papers (2024-02-21T03:39:04Z) - Disentanglement via Latent Quantization [60.37109712033694]
In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space.
We demonstrate the broad applicability of this approach by adding it to both basic data-re (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models.
arXiv Detail & Related papers (2023-05-28T06:30:29Z) - Variational Diffusion Auto-encoder: Latent Space Extraction from
Pre-trained Diffusion Models [0.0]
Variational Auto-Encoders (VAEs) face challenges with the quality of generated images, often presenting noticeable blurriness.
This issue stems from the unrealistic assumption that approximates the conditional data distribution, $p(textbfx | textbfz)$, as an isotropic Gaussian.
We illustrate how one can extract a latent space from a pre-existing diffusion model by optimizing an encoder to maximize the marginal data log-likelihood.
arXiv Detail & Related papers (2023-04-24T14:44:47Z) - Distributional Learning of Variational AutoEncoder: Application to
Synthetic Data Generation [0.7614628596146602]
We propose a new approach that expands the model capacity without sacrificing the computational advantages of the VAE framework.
Our VAE model's decoder is composed of an infinite mixture of asymmetric Laplace distribution.
We apply the proposed model to synthetic data generation, and particularly, our model demonstrates superiority in easily adjusting the level of data privacy.
arXiv Detail & Related papers (2023-02-22T11:26:50Z) - Diffusion bridges vector quantized Variational AutoEncoders [0.0]
We show that our model is competitive with the autoregressive prior on the mini-Imagenet dataset.
Our framework also extends the standard VQ-VAE and enables end-to-end training.
arXiv Detail & Related papers (2022-02-10T08:38:12Z) - InteL-VAEs: Adding Inductive Biases to Variational Auto-Encoders via
Intermediary Latents [60.785317191131284]
We introduce a simple and effective method for learning VAEs with controllable biases by using an intermediary set of latent variables.
In particular, it allows us to impose desired properties like sparsity or clustering on learned representations.
We show that this, in turn, allows InteL-VAEs to learn both better generative models and representations.
arXiv Detail & Related papers (2021-06-25T16:34:05Z) - Re-parameterizing VAEs for stability [1.90365714903665]
We propose a theoretical approach towards the training numerical stability of Variational AutoEncoders (VAE)
Our work is motivated by recent studies empowering VAEs to reach state of the art generative results on complex image datasets.
We show that by implementing small changes to the way we parameterize the Normal distributions on which they rely, VAEs can securely be trained.
arXiv Detail & Related papers (2021-06-25T16:19:09Z) - Autoencoding Variational Autoencoder [56.05008520271406]
We study the implications of this behaviour on the learned representations and also the consequences of fixing it by introducing a notion of self consistency.
We show that encoders trained with our self-consistency approach lead to representations that are robust (insensitive) to perturbations in the input introduced by adversarial attacks.
arXiv Detail & Related papers (2020-12-07T14:16:14Z) - Unbiased Gradient Estimation for Variational Auto-Encoders using Coupled
Markov Chains [34.77971292478243]
The variational auto-encoder (VAE) is a deep latent variable model that has two neural networks in an autoencoder-like architecture.
We develop a training scheme for VAEs by introducing unbiased estimators of the log-likelihood gradient.
We show experimentally that VAEs fitted with unbiased estimators exhibit better predictive performance.
arXiv Detail & Related papers (2020-10-05T08:11:55Z) - Variational Hyper-Encoding Networks [62.74164588885455]
We propose a framework called HyperVAE for encoding distributions of neural network parameters theta.
We predict the posterior distribution of the latent code, then use a matrix-network decoder to generate a posterior distribution q(theta)
arXiv Detail & Related papers (2020-05-18T06:46:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.