Gaussian Mixture Vector Quantization with Aggregated Categorical Posterior
- URL: http://arxiv.org/abs/2410.10180v1
- Date: Mon, 14 Oct 2024 05:58:11 GMT
- Title: Gaussian Mixture Vector Quantization with Aggregated Categorical Posterior
- Authors: Mingyuan Yan, Jiawei Wu, Rushi Shah, Dianbo Liu,
- Abstract summary: We introduce the Vector Quantized Variational Autoencoder (VQ-VAE)
VQ-VAE is a type of variational autoencoder using discrete embedding as latent.
We show that GM-VQ improves codebook utilization and reduces information loss without relying on handcrafteds.
- Score: 5.862123282894087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The vector quantization is a widely used method to map continuous representation to discrete space and has important application in tokenization for generative mode, bottlenecking information and many other tasks in machine learning. Vector Quantized Variational Autoencoder (VQ-VAE) is a type of variational autoencoder using discrete embedding as latent. We generalize the technique further, enriching the probabilistic framework with a Gaussian mixture as the underlying generative model. This framework leverages a codebook of latent means and adaptive variances to capture complex data distributions. This principled framework avoids various heuristics and strong assumptions that are needed with the VQ-VAE to address training instability and to improve codebook utilization. This approach integrates the benefits of both discrete and continuous representations within a variational Bayesian framework. Furthermore, by introducing the \textit{Aggregated Categorical Posterior Evidence Lower Bound} (ALBO), we offer a principled alternative optimization objective that aligns variational distributions with the generative model. Our experiments demonstrate that GM-VQ improves codebook utilization and reduces information loss without relying on handcrafted heuristics.
Related papers
- Uniform Transformation: Refining Latent Representation in Variational Autoencoders [7.4316292428754105]
We introduce a novel adaptable three-stage Uniform Transformation (UT) module to address irregular latent distributions.
By reconfiguring irregular distributions into a uniform distribution in the latent space, our approach significantly enhances the disentanglement and interpretability of latent representations.
Empirical evaluations demonstrated the efficacy of our proposed UT module in improving disentanglement metrics across benchmark datasets.
arXiv Detail & Related papers (2024-07-02T21:46:23Z) - How to train your VAE [0.0]
Variational Autoencoders (VAEs) have become a cornerstone in generative modeling and representation learning within machine learning.
This paper explores interpreting the Kullback-Leibler (KL) Divergence, a critical component within the Evidence Lower Bound (ELBO)
The proposed method redefines the ELBO with a mixture of Gaussians for the posterior probability, introduces a regularization term, and employs a PatchGAN discriminator to enhance texture realism.
arXiv Detail & Related papers (2023-09-22T19:52:28Z) - Disentanglement via Latent Quantization [60.37109712033694]
In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space.
We demonstrate the broad applicability of this approach by adding it to both basic data-re (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models.
arXiv Detail & Related papers (2023-05-28T06:30:29Z) - Straightening Out the Straight-Through Estimator: Overcoming
Optimization Challenges in Vector Quantized Networks [35.6604960300194]
This work examines the challenges of training neural networks using vector quantization using straight-through estimation.
We find that a primary cause of training instability is the discrepancy between the model embedding and the code-vector distribution.
We identify the factors that contribute to this issue, including the codebook gradient sparsity and the asymmetric nature of the commitment loss.
arXiv Detail & Related papers (2023-05-15T17:56:36Z) - Vector Quantized Wasserstein Auto-Encoder [57.29764749855623]
We study learning deep discrete representations from the generative viewpoint.
We endow discrete distributions over sequences of codewords and learn a deterministic decoder that transports the distribution over the sequences of codewords to the data distribution.
We develop further theories to connect it with the clustering viewpoint of WS distance, allowing us to have a better and more controllable clustering solution.
arXiv Detail & Related papers (2023-02-12T13:51:36Z) - A Sparsity-promoting Dictionary Model for Variational Autoencoders [16.61511959679188]
Structuring the latent space in deep generative models is important to yield more expressive models and interpretable representations.
We propose a simple yet effective methodology to structure the latent space via a sparsity-promoting dictionary model.
arXiv Detail & Related papers (2022-03-29T17:13:11Z) - Adaptive Discrete Communication Bottlenecks with Dynamic Vector
Quantization [76.68866368409216]
We propose learning to dynamically select discretization tightness conditioned on inputs.
We show that dynamically varying tightness in communication bottlenecks can improve model performance on visual reasoning and reinforcement learning tasks.
arXiv Detail & Related papers (2022-02-02T23:54:26Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
Variational autoencoders (VAE) are a powerful and widely-used class of generative models.
We introduce a new constrained objective based on the Cauchy-Schwarz divergence, which can be computed analytically for GMMs.
Our objective improves upon variational auto-encoding models in density estimation, unsupervised clustering, semi-supervised learning, and face analysis.
arXiv Detail & Related papers (2021-01-06T17:36:26Z) - Autoencoding Variational Autoencoder [56.05008520271406]
We study the implications of this behaviour on the learned representations and also the consequences of fixing it by introducing a notion of self consistency.
We show that encoders trained with our self-consistency approach lead to representations that are robust (insensitive) to perturbations in the input introduced by adversarial attacks.
arXiv Detail & Related papers (2020-12-07T14:16:14Z) - Robust Training of Vector Quantized Bottleneck Models [21.540133031071438]
We demonstrate methods for reliable and efficient training of discrete representation using Vector-Quantized Variational Auto-Encoder models (VQ-VAEs)
For unsupervised representation learning, they became viable alternatives to continuous latent variable models such as the Variational Auto-Encoder (VAE)
arXiv Detail & Related papers (2020-05-18T08:23:41Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.